嵌入边界和麦克斯韦界面问题的Hermite-Taylor修正函数法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yann-Meing Law , Daniel Appelö , Thomas Hagstrom
{"title":"嵌入边界和麦克斯韦界面问题的Hermite-Taylor修正函数法","authors":"Yann-Meing Law ,&nbsp;Daniel Appelö ,&nbsp;Thomas Hagstrom","doi":"10.1016/j.jcp.2025.114111","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel Hermite-Taylor correction function method to handle embedded boundary and interface conditions for Maxwell’s equations. The Hermite-Taylor method evolves the electromagnetic fields and their derivatives through order <span><math><mi>m</mi></math></span> in each Cartesian coordinate. This makes the development of a systematic approach to enforce boundary and interface conditions difficult. Here we use the correction function method to update the numerical solution where the Hermite-Taylor method cannot be applied directly. Time derivatives of boundary and interface conditions, converted into spatial derivatives, are enforced to obtain a stable method and relax the time-step size restriction of the Hermite-Taylor correction function method. The proposed high-order method offers a flexible systematic approach to handle embedded boundary and interface problems, including problems with discontinuous solutions at the interface. This method is also easily adaptable to other first order hyperbolic systems.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"537 ","pages":"Article 114111"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hermite-Taylor correction function method for embedded boundary and Maxwell’s interface problems\",\"authors\":\"Yann-Meing Law ,&nbsp;Daniel Appelö ,&nbsp;Thomas Hagstrom\",\"doi\":\"10.1016/j.jcp.2025.114111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a novel Hermite-Taylor correction function method to handle embedded boundary and interface conditions for Maxwell’s equations. The Hermite-Taylor method evolves the electromagnetic fields and their derivatives through order <span><math><mi>m</mi></math></span> in each Cartesian coordinate. This makes the development of a systematic approach to enforce boundary and interface conditions difficult. Here we use the correction function method to update the numerical solution where the Hermite-Taylor method cannot be applied directly. Time derivatives of boundary and interface conditions, converted into spatial derivatives, are enforced to obtain a stable method and relax the time-step size restriction of the Hermite-Taylor correction function method. The proposed high-order method offers a flexible systematic approach to handle embedded boundary and interface problems, including problems with discontinuous solutions at the interface. This method is also easily adaptable to other first order hyperbolic systems.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"537 \",\"pages\":\"Article 114111\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125003948\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125003948","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的Hermite-Taylor修正函数方法来处理麦克斯韦方程组的嵌入边界和界面条件。Hermite-Taylor方法在每个笛卡尔坐标中通过m阶来演化电磁场及其导数。这使得开发一种系统的方法来执行边界和界面条件变得困难。在不能直接应用厄米特-泰勒法的情况下,本文采用修正函数法对数值解进行更新。将边界和界面条件的时间导数转换为空间导数,得到稳定的方法,并放宽了Hermite-Taylor修正函数法的时间步长限制。所提出的高阶方法提供了一种灵活的系统方法来处理嵌入式边界和界面问题,包括在界面处具有不连续解的问题。这种方法也很容易适用于其他一阶双曲系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hermite-Taylor correction function method for embedded boundary and Maxwell’s interface problems
We propose a novel Hermite-Taylor correction function method to handle embedded boundary and interface conditions for Maxwell’s equations. The Hermite-Taylor method evolves the electromagnetic fields and their derivatives through order m in each Cartesian coordinate. This makes the development of a systematic approach to enforce boundary and interface conditions difficult. Here we use the correction function method to update the numerical solution where the Hermite-Taylor method cannot be applied directly. Time derivatives of boundary and interface conditions, converted into spatial derivatives, are enforced to obtain a stable method and relax the time-step size restriction of the Hermite-Taylor correction function method. The proposed high-order method offers a flexible systematic approach to handle embedded boundary and interface problems, including problems with discontinuous solutions at the interface. This method is also easily adaptable to other first order hyperbolic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信