{"title":"跨尺度的保形预测:具有层次效率的有限样本覆盖","authors":"Ali Baheri , Marzieh Amiri Shahbazi","doi":"10.1016/j.rinam.2025.100589","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a multi-scale extension of conformal prediction, an approach that constructs prediction sets with finite-sample coverage guarantees under minimal statistical assumptions. Classic conformal prediction relies on a single notion of “conformity” overlooking the multi-level structures that arise in applications such as image analysis, hierarchical data exploration, and multi-resolution time series modeling. In contrast, the proposed framework defines a distinct conformity function at each relevant scale or resolution, producing multiple conformal predictors whose prediction sets are then intersected to form the final multi-scale output. We establish theoretical results confirming that the multi-scale prediction set retains the marginal coverage guarantees of the original conformal framework and can, in fact, yield smaller or more precise sets in practice. By distributing the total miscoverage probability across scales in proportion to their informative power, the method further refines the set sizes. We also show that the dependence between scales can lead to conservative coverage, ensuring that the actual coverage exceeds the nominal level. Numerical experiments in a synthetic classification setting demonstrate that multi-scale conformal prediction achieves or surpasses the nominal coverage level while generating smaller prediction sets compared to single-scale conformal methods.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100589"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal prediction across scales: Finite-sample coverage with hierarchical efficiency\",\"authors\":\"Ali Baheri , Marzieh Amiri Shahbazi\",\"doi\":\"10.1016/j.rinam.2025.100589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a multi-scale extension of conformal prediction, an approach that constructs prediction sets with finite-sample coverage guarantees under minimal statistical assumptions. Classic conformal prediction relies on a single notion of “conformity” overlooking the multi-level structures that arise in applications such as image analysis, hierarchical data exploration, and multi-resolution time series modeling. In contrast, the proposed framework defines a distinct conformity function at each relevant scale or resolution, producing multiple conformal predictors whose prediction sets are then intersected to form the final multi-scale output. We establish theoretical results confirming that the multi-scale prediction set retains the marginal coverage guarantees of the original conformal framework and can, in fact, yield smaller or more precise sets in practice. By distributing the total miscoverage probability across scales in proportion to their informative power, the method further refines the set sizes. We also show that the dependence between scales can lead to conservative coverage, ensuring that the actual coverage exceeds the nominal level. Numerical experiments in a synthetic classification setting demonstrate that multi-scale conformal prediction achieves or surpasses the nominal coverage level while generating smaller prediction sets compared to single-scale conformal methods.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100589\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Conformal prediction across scales: Finite-sample coverage with hierarchical efficiency
We propose a multi-scale extension of conformal prediction, an approach that constructs prediction sets with finite-sample coverage guarantees under minimal statistical assumptions. Classic conformal prediction relies on a single notion of “conformity” overlooking the multi-level structures that arise in applications such as image analysis, hierarchical data exploration, and multi-resolution time series modeling. In contrast, the proposed framework defines a distinct conformity function at each relevant scale or resolution, producing multiple conformal predictors whose prediction sets are then intersected to form the final multi-scale output. We establish theoretical results confirming that the multi-scale prediction set retains the marginal coverage guarantees of the original conformal framework and can, in fact, yield smaller or more precise sets in practice. By distributing the total miscoverage probability across scales in proportion to their informative power, the method further refines the set sizes. We also show that the dependence between scales can lead to conservative coverage, ensuring that the actual coverage exceeds the nominal level. Numerical experiments in a synthetic classification setting demonstrate that multi-scale conformal prediction achieves or surpasses the nominal coverage level while generating smaller prediction sets compared to single-scale conformal methods.