{"title":"基于变分公式和正则方形网格的节点鬼影法求解二维任意域上的椭圆问题","authors":"Clarissa Astuto , Daniele Boffi , Giovanni Russo , Umberto Zerbinati","doi":"10.1016/j.cma.2025.118041","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the numerical solution of elliptic partial differential equations (PDEs) with Dirichlet and mixed boundary conditions, specifically addressing the challenges arising from irregular domains. Both finite element method (FEM) and finite difference method (FDM), face difficulties in dealing with arbitrary domains. The paper introduces a novel nodal symmetric ghost method based on a variational formulation, which combines the advantages of FEM and FDM. The method employs bilinear finite elements on a structured mesh and provides a detailed implementation description. A rigorous a priori convergence rate analysis is also presented. The convergence rates are validated with many numerical experiments, in both one and two space dimensions.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"443 ","pages":"Article 118041"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nodal ghost method based on variational formulation and regular square grid for elliptic problems on arbitrary domains in two space dimensions\",\"authors\":\"Clarissa Astuto , Daniele Boffi , Giovanni Russo , Umberto Zerbinati\",\"doi\":\"10.1016/j.cma.2025.118041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the numerical solution of elliptic partial differential equations (PDEs) with Dirichlet and mixed boundary conditions, specifically addressing the challenges arising from irregular domains. Both finite element method (FEM) and finite difference method (FDM), face difficulties in dealing with arbitrary domains. The paper introduces a novel nodal symmetric ghost method based on a variational formulation, which combines the advantages of FEM and FDM. The method employs bilinear finite elements on a structured mesh and provides a detailed implementation description. A rigorous a priori convergence rate analysis is also presented. The convergence rates are validated with many numerical experiments, in both one and two space dimensions.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"443 \",\"pages\":\"Article 118041\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525003135\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525003135","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A nodal ghost method based on variational formulation and regular square grid for elliptic problems on arbitrary domains in two space dimensions
This paper focuses on the numerical solution of elliptic partial differential equations (PDEs) with Dirichlet and mixed boundary conditions, specifically addressing the challenges arising from irregular domains. Both finite element method (FEM) and finite difference method (FDM), face difficulties in dealing with arbitrary domains. The paper introduces a novel nodal symmetric ghost method based on a variational formulation, which combines the advantages of FEM and FDM. The method employs bilinear finite elements on a structured mesh and provides a detailed implementation description. A rigorous a priori convergence rate analysis is also presented. The convergence rates are validated with many numerical experiments, in both one and two space dimensions.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.