与能量收集器集成的准零刚度隔离器的几何非线性动力学:单稳定、完全零线性刚度和双稳定振荡模式

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Nasser A. Saeed , Y.Y. Ellabban , Lei Hou , Shun Zhong , Faisal Z. Duraihem
{"title":"与能量收集器集成的准零刚度隔离器的几何非线性动力学:单稳定、完全零线性刚度和双稳定振荡模式","authors":"Nasser A. Saeed ,&nbsp;Y.Y. Ellabban ,&nbsp;Lei Hou ,&nbsp;Shun Zhong ,&nbsp;Faisal Z. Duraihem","doi":"10.1016/j.chaos.2025.116633","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving effective vibration isolation across a broad frequency range while simultaneously harvesting energy from vibrations remains a key challenge in engineering systems. This study examines the nonlinear dynamics and vibration isolation performance of an oblique-type spring quasi-zero stiffness (QZS) isolator integrated with a piezoelectric energy harvester. The coupled system is modeled as a strongly nonlinear oscillator linked to a first-order differential equation governing the harvester's response. The QZS isolator's behavior is characterized by two geometric nonlinearity parameters, the stiffness ratio of oblique to vertical springs (<span><math><mi>ρ</mi></math></span>) and the ratio of the oblique spring's maximum horizontal compression to its free length (<span><math><mi>λ</mi></math></span>). Closed-form expressions for <span><math><mi>ρ</mi></math></span> and <span><math><mi>λ</mi></math></span> are derived to determine the conditions for monostable, bistable, and perfect zero-linear stiffness operation. The system's response is analyzed using the harmonic balance method, with bifurcation diagrams illustrating oscillation amplitudes, harvested voltage, and displacement transmissibility under different excitation conditions. Key findings indicate that for <span><math><mi>ρ</mi><mo>&lt;</mo><mi>λ</mi><mo>/</mo><mfenced><mrow><mn>2</mn><mo>−</mo><mn>2</mn><mi>λ</mi></mrow></mfenced></math></span>, the system functions as a monostable QZS isolator, where reducing <span><math><mi>λ</mi></math></span> and/or increasing <span><math><mi>ρ</mi></math></span> suppresses resonant peaks, creating a semi-full-band isolator. When <span><math><mi>ρ</mi><mo>=</mo><mi>λ</mi><mo>/</mo><mfenced><mrow><mn>2</mn><mo>−</mo><mn>2</mn><mi>λ</mi></mrow></mfenced></math></span>, the system achieves full-band vibration isolation with perfect zero-linear stiffness, enhanced by high pre-compression of the oblique springs. For <span><math><mi>ρ</mi><mo>&gt;</mo><mi>λ</mi><mo>/</mo><mfenced><mrow><mn>2</mn><mo>−</mo><mn>2</mn><mi>λ</mi></mrow></mfenced></math></span>, the system transitions to a bistable regime, improving energy harvesting but reducing isolation efficiency. Additionally, the piezoelectric harvester not only facilitates energy conversion but also introduces active damping, effectively mitigating resonant peaks and stabilizing the system under strong base excitations while minimally affecting high-frequency displacement transmissibility. This work provides a comprehensive understanding of the oscillation modes in oblique-type QZS systems and offers design insights for optimizing geometric parameters to achieve full-band or semi-full-band isolation and efficient energy harvesting.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116633"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric nonlinear dynamics of a quasi-zero stiffness isolator integrated with an energy harvester: Monostable, perfect zero-linear stiffness, and bistable oscillation modes\",\"authors\":\"Nasser A. Saeed ,&nbsp;Y.Y. Ellabban ,&nbsp;Lei Hou ,&nbsp;Shun Zhong ,&nbsp;Faisal Z. Duraihem\",\"doi\":\"10.1016/j.chaos.2025.116633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Achieving effective vibration isolation across a broad frequency range while simultaneously harvesting energy from vibrations remains a key challenge in engineering systems. This study examines the nonlinear dynamics and vibration isolation performance of an oblique-type spring quasi-zero stiffness (QZS) isolator integrated with a piezoelectric energy harvester. The coupled system is modeled as a strongly nonlinear oscillator linked to a first-order differential equation governing the harvester's response. The QZS isolator's behavior is characterized by two geometric nonlinearity parameters, the stiffness ratio of oblique to vertical springs (<span><math><mi>ρ</mi></math></span>) and the ratio of the oblique spring's maximum horizontal compression to its free length (<span><math><mi>λ</mi></math></span>). Closed-form expressions for <span><math><mi>ρ</mi></math></span> and <span><math><mi>λ</mi></math></span> are derived to determine the conditions for monostable, bistable, and perfect zero-linear stiffness operation. The system's response is analyzed using the harmonic balance method, with bifurcation diagrams illustrating oscillation amplitudes, harvested voltage, and displacement transmissibility under different excitation conditions. Key findings indicate that for <span><math><mi>ρ</mi><mo>&lt;</mo><mi>λ</mi><mo>/</mo><mfenced><mrow><mn>2</mn><mo>−</mo><mn>2</mn><mi>λ</mi></mrow></mfenced></math></span>, the system functions as a monostable QZS isolator, where reducing <span><math><mi>λ</mi></math></span> and/or increasing <span><math><mi>ρ</mi></math></span> suppresses resonant peaks, creating a semi-full-band isolator. When <span><math><mi>ρ</mi><mo>=</mo><mi>λ</mi><mo>/</mo><mfenced><mrow><mn>2</mn><mo>−</mo><mn>2</mn><mi>λ</mi></mrow></mfenced></math></span>, the system achieves full-band vibration isolation with perfect zero-linear stiffness, enhanced by high pre-compression of the oblique springs. For <span><math><mi>ρ</mi><mo>&gt;</mo><mi>λ</mi><mo>/</mo><mfenced><mrow><mn>2</mn><mo>−</mo><mn>2</mn><mi>λ</mi></mrow></mfenced></math></span>, the system transitions to a bistable regime, improving energy harvesting but reducing isolation efficiency. Additionally, the piezoelectric harvester not only facilitates energy conversion but also introduces active damping, effectively mitigating resonant peaks and stabilizing the system under strong base excitations while minimally affecting high-frequency displacement transmissibility. This work provides a comprehensive understanding of the oscillation modes in oblique-type QZS systems and offers design insights for optimizing geometric parameters to achieve full-band or semi-full-band isolation and efficient energy harvesting.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116633\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925006460\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925006460","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在广泛的频率范围内实现有效的隔振,同时从振动中收集能量,仍然是工程系统的一个关键挑战。研究了集成压电能量采集器的斜弹簧准零刚度(QZS)隔振器的非线性动力学和隔振性能。耦合系统被建模为与控制收割机响应的一阶微分方程相连接的强非线性振荡器。QZS隔振器的性能由两个几何非线性参数表征,即斜弹簧与垂直弹簧的刚度比(ρ)和斜弹簧的最大水平压缩与自由长度之比(λ)。导出了ρ和λ的封闭表达式,以确定单稳态、双稳态和完美零线性刚度操作的条件。采用谐波平衡法分析了系统的响应,并给出了不同激励条件下的振荡幅值、收获电压和位移传递率的分岔图。关键发现表明,对于ρ<;λ/2−2λ,系统作为单稳态QZS隔离器,其中减小λ和/或增加ρ抑制谐振峰,形成半全频带隔离器。当ρ=λ/2−2λ时,系统实现了全频带的隔振,具有完美的零线性刚度,并通过斜弹簧的高预压缩得到增强。对于ρ>;λ/2−2λ,系统过渡到双稳态状态,提高了能量收集,但降低了隔离效率。此外,压电采集器不仅便于能量转换,还引入了主动阻尼,在强碱激励下有效地减小谐振峰,稳定系统,同时对高频位移传递率的影响最小。这项工作提供了对斜型QZS系统振荡模式的全面理解,并为优化几何参数以实现全带或半全带隔离和高效能量收集提供了设计见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric nonlinear dynamics of a quasi-zero stiffness isolator integrated with an energy harvester: Monostable, perfect zero-linear stiffness, and bistable oscillation modes
Achieving effective vibration isolation across a broad frequency range while simultaneously harvesting energy from vibrations remains a key challenge in engineering systems. This study examines the nonlinear dynamics and vibration isolation performance of an oblique-type spring quasi-zero stiffness (QZS) isolator integrated with a piezoelectric energy harvester. The coupled system is modeled as a strongly nonlinear oscillator linked to a first-order differential equation governing the harvester's response. The QZS isolator's behavior is characterized by two geometric nonlinearity parameters, the stiffness ratio of oblique to vertical springs (ρ) and the ratio of the oblique spring's maximum horizontal compression to its free length (λ). Closed-form expressions for ρ and λ are derived to determine the conditions for monostable, bistable, and perfect zero-linear stiffness operation. The system's response is analyzed using the harmonic balance method, with bifurcation diagrams illustrating oscillation amplitudes, harvested voltage, and displacement transmissibility under different excitation conditions. Key findings indicate that for ρ<λ/22λ, the system functions as a monostable QZS isolator, where reducing λ and/or increasing ρ suppresses resonant peaks, creating a semi-full-band isolator. When ρ=λ/22λ, the system achieves full-band vibration isolation with perfect zero-linear stiffness, enhanced by high pre-compression of the oblique springs. For ρ>λ/22λ, the system transitions to a bistable regime, improving energy harvesting but reducing isolation efficiency. Additionally, the piezoelectric harvester not only facilitates energy conversion but also introduces active damping, effectively mitigating resonant peaks and stabilizing the system under strong base excitations while minimally affecting high-frequency displacement transmissibility. This work provides a comprehensive understanding of the oscillation modes in oblique-type QZS systems and offers design insights for optimizing geometric parameters to achieve full-band or semi-full-band isolation and efficient energy harvesting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信