Alessia Pepe*, Paolo Moretti, Paolo Mariani*, Valentina Notarstefano and Francesca Ripanti,
{"title":"自组装g -水凝胶的输运性质:可调傅氏扩散系数的证据","authors":"Alessia Pepe*, Paolo Moretti, Paolo Mariani*, Valentina Notarstefano and Francesca Ripanti, ","doi":"10.1021/acs.jpcb.5c0056410.1021/acs.jpcb.5c00564","DOIUrl":null,"url":null,"abstract":"<p >The mixing of Guanosine (Gua) and Guanosine 5′-monophosphate (GMP) in water in selected compositions yields highly hydrated, transparent, and self-healing self-assembled supramolecular G-hydrogels, attractive for biomedical applications. This work investigates how hydrogel composition affects solute transport, including diffusion, binding, loading, and release properties, using a set of fluorescent probes with varying size and polarity. Although small/wide-angle X-ray scattering techniques showed that no structural changes are induced by probe addition, even when intercalation into G-quadruplexes is expected, the internal mesh structure of the hydrogel, modulated by the Gua:GMP ratio, directly impacts probe diffusivity and loading. Tighter networks (e.g., 1:1) slow diffusion and enhance retention compared to looser configurations (e.g., 1:4). Moreover, UV–visible titrations revealed markedly different binding affinities (<i>K</i><sub>b</sub> ≈ 5.7 × 10<sup>4</sup> M<sup>–1</sup> for DAPI, 8.0 × 10<sup>3</sup> M<sup>–1</sup> for ThT, and 1.4 × 10<sup>2</sup> M<sup>–1</sup> for RhB), which are expected to result in lower diffusion coefficients and slower release, especially for DAPI and ThT. Indeed, diffusion coefficients, obtained via fluorescence recovery after photobleaching and time-resolved fluorescence spectroscopy, reach 90, 20, and 60 μm<sup>2</sup>/s for FITC-dextran, ThT, and RhB, respectively. Probe release kinetics, modeled via Weibull fitting, indicated sustained release with characteristic times (τ) between 9.6 and 23.2 h and β ≈ 1 in 1× PBS, consistent with predominantly Fickian diffusion. Remarkably, switching to 10× PBS significantly accelerated release (τ reduced by ≈ 40–50%), suggesting that ionic strength and/or pH changes critically affect not only probe-hydrogel interactions but also the internal gel architecture, altering porosity, mesh size, and network tortuosity, thus enhancing molecular mobility. Overall, the G-hydrogel system offers a structurally tunable and composition-dependent platform capable of finely regulating molecular transport and release profiles, making it highly suitable for controlled drug delivery and adaptive biomaterial applications.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 21","pages":"5136–5149 5136–5149"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcb.5c00564","citationCount":"0","resultStr":"{\"title\":\"Transport Properties of Self-Assembling G-Hydrogels: Evidence for a Tunable Fickian Diffusivity\",\"authors\":\"Alessia Pepe*, Paolo Moretti, Paolo Mariani*, Valentina Notarstefano and Francesca Ripanti, \",\"doi\":\"10.1021/acs.jpcb.5c0056410.1021/acs.jpcb.5c00564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The mixing of Guanosine (Gua) and Guanosine 5′-monophosphate (GMP) in water in selected compositions yields highly hydrated, transparent, and self-healing self-assembled supramolecular G-hydrogels, attractive for biomedical applications. This work investigates how hydrogel composition affects solute transport, including diffusion, binding, loading, and release properties, using a set of fluorescent probes with varying size and polarity. Although small/wide-angle X-ray scattering techniques showed that no structural changes are induced by probe addition, even when intercalation into G-quadruplexes is expected, the internal mesh structure of the hydrogel, modulated by the Gua:GMP ratio, directly impacts probe diffusivity and loading. Tighter networks (e.g., 1:1) slow diffusion and enhance retention compared to looser configurations (e.g., 1:4). Moreover, UV–visible titrations revealed markedly different binding affinities (<i>K</i><sub>b</sub> ≈ 5.7 × 10<sup>4</sup> M<sup>–1</sup> for DAPI, 8.0 × 10<sup>3</sup> M<sup>–1</sup> for ThT, and 1.4 × 10<sup>2</sup> M<sup>–1</sup> for RhB), which are expected to result in lower diffusion coefficients and slower release, especially for DAPI and ThT. Indeed, diffusion coefficients, obtained via fluorescence recovery after photobleaching and time-resolved fluorescence spectroscopy, reach 90, 20, and 60 μm<sup>2</sup>/s for FITC-dextran, ThT, and RhB, respectively. Probe release kinetics, modeled via Weibull fitting, indicated sustained release with characteristic times (τ) between 9.6 and 23.2 h and β ≈ 1 in 1× PBS, consistent with predominantly Fickian diffusion. Remarkably, switching to 10× PBS significantly accelerated release (τ reduced by ≈ 40–50%), suggesting that ionic strength and/or pH changes critically affect not only probe-hydrogel interactions but also the internal gel architecture, altering porosity, mesh size, and network tortuosity, thus enhancing molecular mobility. Overall, the G-hydrogel system offers a structurally tunable and composition-dependent platform capable of finely regulating molecular transport and release profiles, making it highly suitable for controlled drug delivery and adaptive biomaterial applications.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\"129 21\",\"pages\":\"5136–5149 5136–5149\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcb.5c00564\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c00564\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c00564","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Transport Properties of Self-Assembling G-Hydrogels: Evidence for a Tunable Fickian Diffusivity
The mixing of Guanosine (Gua) and Guanosine 5′-monophosphate (GMP) in water in selected compositions yields highly hydrated, transparent, and self-healing self-assembled supramolecular G-hydrogels, attractive for biomedical applications. This work investigates how hydrogel composition affects solute transport, including diffusion, binding, loading, and release properties, using a set of fluorescent probes with varying size and polarity. Although small/wide-angle X-ray scattering techniques showed that no structural changes are induced by probe addition, even when intercalation into G-quadruplexes is expected, the internal mesh structure of the hydrogel, modulated by the Gua:GMP ratio, directly impacts probe diffusivity and loading. Tighter networks (e.g., 1:1) slow diffusion and enhance retention compared to looser configurations (e.g., 1:4). Moreover, UV–visible titrations revealed markedly different binding affinities (Kb ≈ 5.7 × 104 M–1 for DAPI, 8.0 × 103 M–1 for ThT, and 1.4 × 102 M–1 for RhB), which are expected to result in lower diffusion coefficients and slower release, especially for DAPI and ThT. Indeed, diffusion coefficients, obtained via fluorescence recovery after photobleaching and time-resolved fluorescence spectroscopy, reach 90, 20, and 60 μm2/s for FITC-dextran, ThT, and RhB, respectively. Probe release kinetics, modeled via Weibull fitting, indicated sustained release with characteristic times (τ) between 9.6 and 23.2 h and β ≈ 1 in 1× PBS, consistent with predominantly Fickian diffusion. Remarkably, switching to 10× PBS significantly accelerated release (τ reduced by ≈ 40–50%), suggesting that ionic strength and/or pH changes critically affect not only probe-hydrogel interactions but also the internal gel architecture, altering porosity, mesh size, and network tortuosity, thus enhancing molecular mobility. Overall, the G-hydrogel system offers a structurally tunable and composition-dependent platform capable of finely regulating molecular transport and release profiles, making it highly suitable for controlled drug delivery and adaptive biomaterial applications.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.