标记与未标记数据结合的检索增强生成中的“上下文奇特案例”

Payel Santra, Madhusudan Ghosh, Debasis Ganguly, Partha Basuchowdhuri, Sudip Kumar Naskar
{"title":"标记与未标记数据结合的检索增强生成中的“上下文奇特案例”","authors":"Payel Santra, Madhusudan Ghosh, Debasis Ganguly, Partha Basuchowdhuri, Sudip Kumar Naskar","doi":"10.1002/widm.70021","DOIUrl":null,"url":null,"abstract":"With the growing reliance on LLMs for a wide range of NLP tasks, optimizing the use of labeled and unlabeled data for effective context generation has become critical. This work explores the interplay between two prominent methodologies in few-shot learning: in-context learning (ICL), which utilizes labeled task-specific data, and retrieval-augmented generation (RAG), which leverages unlabeled external knowledge to augment generative models. Since each has its individual limitations, we propose a novel hybrid approach to obtain “the best of both worlds” by dynamically integrating both labeled and unlabeled data towards improving the downstream performance of LLMs. Our methodology, which we call LU-RAG (labeled and unlabeled RAG), recomputes the scores of top-<i>k</i> labeled instances and top-<i>m</i> unlabeled passages to refine context selection. Our experimental results demonstrate that LU-RAG consistently outperforms both standalone ICL and RAG across multiple benchmarks, showing significant gains in downstream performance. Furthermore, we show that LU-RAG performs better with a semantic neighborhood as compared to a lexical one, highlighting its ability to generalize effectively.","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"134 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The “Curious Case of Contexts” in Retrieval-Augmented Generation With a Combination of Labeled and Unlabeled Data\",\"authors\":\"Payel Santra, Madhusudan Ghosh, Debasis Ganguly, Partha Basuchowdhuri, Sudip Kumar Naskar\",\"doi\":\"10.1002/widm.70021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing reliance on LLMs for a wide range of NLP tasks, optimizing the use of labeled and unlabeled data for effective context generation has become critical. This work explores the interplay between two prominent methodologies in few-shot learning: in-context learning (ICL), which utilizes labeled task-specific data, and retrieval-augmented generation (RAG), which leverages unlabeled external knowledge to augment generative models. Since each has its individual limitations, we propose a novel hybrid approach to obtain “the best of both worlds” by dynamically integrating both labeled and unlabeled data towards improving the downstream performance of LLMs. Our methodology, which we call LU-RAG (labeled and unlabeled RAG), recomputes the scores of top-<i>k</i> labeled instances and top-<i>m</i> unlabeled passages to refine context selection. Our experimental results demonstrate that LU-RAG consistently outperforms both standalone ICL and RAG across multiple benchmarks, showing significant gains in downstream performance. Furthermore, we show that LU-RAG performs better with a semantic neighborhood as compared to a lexical one, highlighting its ability to generalize effectively.\",\"PeriodicalId\":501013,\"journal\":{\"name\":\"WIREs Data Mining and Knowledge Discovery\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.70021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着越来越多的NLP任务依赖于llm,优化标记和未标记数据的使用以有效生成上下文变得至关重要。这项工作探讨了在少量学习中两种突出方法之间的相互作用:上下文学习(ICL),它利用标记的任务特定数据,以及检索增强生成(RAG),它利用未标记的外部知识来增强生成模型。由于每种方法都有其各自的局限性,我们提出了一种新的混合方法,通过动态集成标记和未标记的数据来提高llm的下游性能,从而获得“两全其美”。我们的方法,我们称之为LU-RAG(标记和未标记的RAG),重新计算前k个标记实例和前m个未标记段落的分数,以改进上下文选择。我们的实验结果表明,在多个基准测试中,LU-RAG始终优于独立的ICL和RAG,显示出下游性能的显著提高。此外,我们表明,与词汇邻域相比,LU-RAG在语义邻域上的表现更好,突出了其有效泛化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The “Curious Case of Contexts” in Retrieval-Augmented Generation With a Combination of Labeled and Unlabeled Data

The “Curious Case of Contexts” in Retrieval-Augmented Generation With a Combination of Labeled and Unlabeled Data
With the growing reliance on LLMs for a wide range of NLP tasks, optimizing the use of labeled and unlabeled data for effective context generation has become critical. This work explores the interplay between two prominent methodologies in few-shot learning: in-context learning (ICL), which utilizes labeled task-specific data, and retrieval-augmented generation (RAG), which leverages unlabeled external knowledge to augment generative models. Since each has its individual limitations, we propose a novel hybrid approach to obtain “the best of both worlds” by dynamically integrating both labeled and unlabeled data towards improving the downstream performance of LLMs. Our methodology, which we call LU-RAG (labeled and unlabeled RAG), recomputes the scores of top-k labeled instances and top-m unlabeled passages to refine context selection. Our experimental results demonstrate that LU-RAG consistently outperforms both standalone ICL and RAG across multiple benchmarks, showing significant gains in downstream performance. Furthermore, we show that LU-RAG performs better with a semantic neighborhood as compared to a lexical one, highlighting its ability to generalize effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信