H. Wang, Y. Wang, W. Li, A. B. Subramaniyan, G. Zhang
{"title":"多路口信号控制优化的误差分布核增强神经网络学习方法","authors":"H. Wang, Y. Wang, W. Li, A. B. Subramaniyan, G. Zhang","doi":"10.1111/mice.13522","DOIUrl":null,"url":null,"abstract":"Traffic congestion has substantially induced significant mobility and energy inefficiency. Many research challenges are identified in traffic signal control and management associated with artificial intelligence (AI)‐based models. For example, developing AI‐driven dynamic traffic system models that accurately capture high‐resolution traffic attributes and formulate robust control algorithms for traffic signal optimization is difficult. Additionally, uncertainties in traffic system modeling and control processes can further complicate traffic signal system controllability. To partially address these challenges, this study presents a novel, hybrid neural network model enhanced with a probability density function kernel shaping technique to formulate traffic system dynamics better and improve comprehensive traffic network modeling and control. The numerical experimental tests were conducted, and the results demonstrate that the proposed control approach outperforms the baseline control strategies and reduces overall average delays by 11.64% on average. By leveraging the capabilities of this innovative model, this study aims to address major challenges related to traffic congestion and energy inefficiency toward more effective and adaptable AI‐based traffic control systems.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"24 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning error distribution kernel‐enhanced neural network methodology for multi‐intersection signal control optimization\",\"authors\":\"H. Wang, Y. Wang, W. Li, A. B. Subramaniyan, G. Zhang\",\"doi\":\"10.1111/mice.13522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic congestion has substantially induced significant mobility and energy inefficiency. Many research challenges are identified in traffic signal control and management associated with artificial intelligence (AI)‐based models. For example, developing AI‐driven dynamic traffic system models that accurately capture high‐resolution traffic attributes and formulate robust control algorithms for traffic signal optimization is difficult. Additionally, uncertainties in traffic system modeling and control processes can further complicate traffic signal system controllability. To partially address these challenges, this study presents a novel, hybrid neural network model enhanced with a probability density function kernel shaping technique to formulate traffic system dynamics better and improve comprehensive traffic network modeling and control. The numerical experimental tests were conducted, and the results demonstrate that the proposed control approach outperforms the baseline control strategies and reduces overall average delays by 11.64% on average. By leveraging the capabilities of this innovative model, this study aims to address major challenges related to traffic congestion and energy inefficiency toward more effective and adaptable AI‐based traffic control systems.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13522\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13522","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Learning error distribution kernel‐enhanced neural network methodology for multi‐intersection signal control optimization
Traffic congestion has substantially induced significant mobility and energy inefficiency. Many research challenges are identified in traffic signal control and management associated with artificial intelligence (AI)‐based models. For example, developing AI‐driven dynamic traffic system models that accurately capture high‐resolution traffic attributes and formulate robust control algorithms for traffic signal optimization is difficult. Additionally, uncertainties in traffic system modeling and control processes can further complicate traffic signal system controllability. To partially address these challenges, this study presents a novel, hybrid neural network model enhanced with a probability density function kernel shaping technique to formulate traffic system dynamics better and improve comprehensive traffic network modeling and control. The numerical experimental tests were conducted, and the results demonstrate that the proposed control approach outperforms the baseline control strategies and reduces overall average delays by 11.64% on average. By leveraging the capabilities of this innovative model, this study aims to address major challenges related to traffic congestion and energy inefficiency toward more effective and adaptable AI‐based traffic control systems.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.