Jiří Etrych, Gevorg Martirosyan, Alec Cao, Christopher J. Ho, Zoran Hadzibabic, Christoph Eigen
{"title":"玻色极化子的普遍量子动力学","authors":"Jiří Etrych, Gevorg Martirosyan, Alec Cao, Christopher J. Ho, Zoran Hadzibabic, Christoph Eigen","doi":"10.1103/physrevx.15.021070","DOIUrl":null,"url":null,"abstract":"Predicting the emergent properties of impurities immersed in a quantum bath is a fundamental challenge that can defy quasiparticle treatments. Here, we measure the spectral properties and real-time dynamics of mobile impurities injected into a weakly interacting homogeneous Bose-Einstein condensate, using two broad Feshbach resonances to tune both the impurity-bath and intrabath interactions. For attractive impurity-bath interactions, the impurity spectrum features a single branch, which away from the resonance corresponds to a well-defined attractive polaron; near the resonance, we observe dramatic broadening of this branch, suggesting a breakdown of the quasiparticle picture. For repulsive impurity-bath interactions, the spectrum features two branches: the attractive branch that is dominated by excitations with energy close to that of the Feshbach dimer, but has a many-body character, and the repulsive polaron branch. Our measurements show that the behavior of impurities in weakly interacting baths is remarkably universal, controlled only by the bath density and a single dimensionless interaction parameter. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"49 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal Quantum Dynamics of Bose Polarons\",\"authors\":\"Jiří Etrych, Gevorg Martirosyan, Alec Cao, Christopher J. Ho, Zoran Hadzibabic, Christoph Eigen\",\"doi\":\"10.1103/physrevx.15.021070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the emergent properties of impurities immersed in a quantum bath is a fundamental challenge that can defy quasiparticle treatments. Here, we measure the spectral properties and real-time dynamics of mobile impurities injected into a weakly interacting homogeneous Bose-Einstein condensate, using two broad Feshbach resonances to tune both the impurity-bath and intrabath interactions. For attractive impurity-bath interactions, the impurity spectrum features a single branch, which away from the resonance corresponds to a well-defined attractive polaron; near the resonance, we observe dramatic broadening of this branch, suggesting a breakdown of the quasiparticle picture. For repulsive impurity-bath interactions, the spectrum features two branches: the attractive branch that is dominated by excitations with energy close to that of the Feshbach dimer, but has a many-body character, and the repulsive polaron branch. Our measurements show that the behavior of impurities in weakly interacting baths is remarkably universal, controlled only by the bath density and a single dimensionless interaction parameter. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021070\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021070","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Predicting the emergent properties of impurities immersed in a quantum bath is a fundamental challenge that can defy quasiparticle treatments. Here, we measure the spectral properties and real-time dynamics of mobile impurities injected into a weakly interacting homogeneous Bose-Einstein condensate, using two broad Feshbach resonances to tune both the impurity-bath and intrabath interactions. For attractive impurity-bath interactions, the impurity spectrum features a single branch, which away from the resonance corresponds to a well-defined attractive polaron; near the resonance, we observe dramatic broadening of this branch, suggesting a breakdown of the quasiparticle picture. For repulsive impurity-bath interactions, the spectrum features two branches: the attractive branch that is dominated by excitations with energy close to that of the Feshbach dimer, but has a many-body character, and the repulsive polaron branch. Our measurements show that the behavior of impurities in weakly interacting baths is remarkably universal, controlled only by the bath density and a single dimensionless interaction parameter. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.