{"title":"任意量子比特连通性约束下量子电路编译深度开销的全面表征","authors":"Pei Yuan, Shengyu Zhang","doi":"10.22331/q-2025-05-28-1757","DOIUrl":null,"url":null,"abstract":"In some physical implementations of quantum computers, 2-qubit operations can be applied only on certain pairs of qubits. Compilation of a quantum circuit into one compliant to such qubit connectivity constraint results in an increase of circuit depth. Various compilation algorithms were studied, yet what this depth overhead is remains elusive. In this paper, we fully characterize the depth overhead by the routing number of the underlying constraint graph, a graph-theoretic measure which has been studied for 3 decades. We also give reduction algorithms between different graphs, which allow compilation for one graph to be transferred to one for another. These results, when combined with existing routing algorithms, give asymptotically optimal compilation for all commonly seen connectivity graphs in quantum computing.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"58 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full Characterization of the Depth Overhead for Quantum Circuit Compilation with Arbitrary Qubit Connectivity Constraint\",\"authors\":\"Pei Yuan, Shengyu Zhang\",\"doi\":\"10.22331/q-2025-05-28-1757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some physical implementations of quantum computers, 2-qubit operations can be applied only on certain pairs of qubits. Compilation of a quantum circuit into one compliant to such qubit connectivity constraint results in an increase of circuit depth. Various compilation algorithms were studied, yet what this depth overhead is remains elusive. In this paper, we fully characterize the depth overhead by the routing number of the underlying constraint graph, a graph-theoretic measure which has been studied for 3 decades. We also give reduction algorithms between different graphs, which allow compilation for one graph to be transferred to one for another. These results, when combined with existing routing algorithms, give asymptotically optimal compilation for all commonly seen connectivity graphs in quantum computing.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-05-28-1757\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-28-1757","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Full Characterization of the Depth Overhead for Quantum Circuit Compilation with Arbitrary Qubit Connectivity Constraint
In some physical implementations of quantum computers, 2-qubit operations can be applied only on certain pairs of qubits. Compilation of a quantum circuit into one compliant to such qubit connectivity constraint results in an increase of circuit depth. Various compilation algorithms were studied, yet what this depth overhead is remains elusive. In this paper, we fully characterize the depth overhead by the routing number of the underlying constraint graph, a graph-theoretic measure which has been studied for 3 decades. We also give reduction algorithms between different graphs, which allow compilation for one graph to be transferred to one for another. These results, when combined with existing routing algorithms, give asymptotically optimal compilation for all commonly seen connectivity graphs in quantum computing.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.