G-Transformer:动态和时变治疗机制下的反事实结果预测。

Hong Xiong, Feng Wu, Leon Deng, Megan Su, Zach Shahn, Li-Wei H Lehman
{"title":"G-Transformer:动态和时变治疗机制下的反事实结果预测。","authors":"Hong Xiong, Feng Wu, Leon Deng, Megan Su, Zach Shahn, Li-Wei H Lehman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of medical decision making, counterfactual prediction enables clinicians to predict treatment outcomes of interest under alternative courses of therapeutic actions given observed patient history. In this work, we present G-Transformer for counterfactual outcome prediction under dynamic and time-varying treatment strategies. Our approach leverages a Transformer architecture to capture complex, long-range dependencies in time-varying covariates while enabling g-computation, a causal inference method for estimating the effects of dynamic treatment regimes. Specifically, we use a Transformer-based encoder architecture to estimate the conditional distribution of relevant covariates given covariate and treatment history at each time point, then produces Monte Carlo estimates of counterfactual outcomes by simulating forward patient trajectories under treatment strategies of interest. We evaluate G-Transformer extensively using two simulated longitudinal datasets from mechanistic models, and a real-world sepsis ICU dataset from MIMIC-IV. G-Transformer outperforms both classical and state-of-the-art counterfactual prediction models in these settings. To the best of our knowledge, this is the first Transformer-based architecture that supports g-computation for counterfactual outcome prediction under dynamic and time-varying treatment strategies.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"252 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113242/pdf/","citationCount":"0","resultStr":"{\"title\":\"G-Transformer: Counterfactual Outcome Prediction under Dynamic and Time-varying Treatment Regimes.\",\"authors\":\"Hong Xiong, Feng Wu, Leon Deng, Megan Su, Zach Shahn, Li-Wei H Lehman\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the context of medical decision making, counterfactual prediction enables clinicians to predict treatment outcomes of interest under alternative courses of therapeutic actions given observed patient history. In this work, we present G-Transformer for counterfactual outcome prediction under dynamic and time-varying treatment strategies. Our approach leverages a Transformer architecture to capture complex, long-range dependencies in time-varying covariates while enabling g-computation, a causal inference method for estimating the effects of dynamic treatment regimes. Specifically, we use a Transformer-based encoder architecture to estimate the conditional distribution of relevant covariates given covariate and treatment history at each time point, then produces Monte Carlo estimates of counterfactual outcomes by simulating forward patient trajectories under treatment strategies of interest. We evaluate G-Transformer extensively using two simulated longitudinal datasets from mechanistic models, and a real-world sepsis ICU dataset from MIMIC-IV. G-Transformer outperforms both classical and state-of-the-art counterfactual prediction models in these settings. To the best of our knowledge, this is the first Transformer-based architecture that supports g-computation for counterfactual outcome prediction under dynamic and time-varying treatment strategies.</p>\",\"PeriodicalId\":74504,\"journal\":{\"name\":\"Proceedings of machine learning research\",\"volume\":\"252 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在医疗决策的背景下,反事实预测使临床医生能够根据观察到的患者病史预测治疗行动的替代过程中感兴趣的治疗结果。在这项工作中,我们提出了G-Transformer用于动态和时变治疗策略下的反事实结果预测。我们的方法利用Transformer架构来捕获时变协变量中的复杂、长期依赖关系,同时启用g计算,这是一种用于估计动态处理机制效果的因果推理方法。具体来说,我们使用基于transformer的编码器架构来估计每个时间点给定协变量和治疗历史的相关协变量的条件分布,然后通过模拟患者在感兴趣的治疗策略下的前向轨迹来产生反事实结果的蒙特卡罗估计。我们使用来自机制模型的两个模拟纵向数据集和来自MIMIC-IV的真实脓毒症ICU数据集广泛评估G-Transformer。在这些情况下,G-Transformer的表现优于经典和最先进的反事实预测模型。据我们所知,这是第一个基于transformer的架构,它支持在动态和时变处理策略下进行反事实结果预测的g计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
G-Transformer: Counterfactual Outcome Prediction under Dynamic and Time-varying Treatment Regimes.

In the context of medical decision making, counterfactual prediction enables clinicians to predict treatment outcomes of interest under alternative courses of therapeutic actions given observed patient history. In this work, we present G-Transformer for counterfactual outcome prediction under dynamic and time-varying treatment strategies. Our approach leverages a Transformer architecture to capture complex, long-range dependencies in time-varying covariates while enabling g-computation, a causal inference method for estimating the effects of dynamic treatment regimes. Specifically, we use a Transformer-based encoder architecture to estimate the conditional distribution of relevant covariates given covariate and treatment history at each time point, then produces Monte Carlo estimates of counterfactual outcomes by simulating forward patient trajectories under treatment strategies of interest. We evaluate G-Transformer extensively using two simulated longitudinal datasets from mechanistic models, and a real-world sepsis ICU dataset from MIMIC-IV. G-Transformer outperforms both classical and state-of-the-art counterfactual prediction models in these settings. To the best of our knowledge, this is the first Transformer-based architecture that supports g-computation for counterfactual outcome prediction under dynamic and time-varying treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信