{"title":"同源特征辅助量化计算机断层扫描图像中的纤维化病变:基于CT图像特征的基因表达分布预测的概念证明。","authors":"Kentaro Doi, Hodaka Numasaki, Yusuke Anetai, Yayoi Natsume-Kitatani","doi":"10.1007/s11548-025-03428-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Computed tomography (CT) image is promising for diagnosing of interstitial idiopathic pneumonias (IIPs); however, quantification of IIPs lesions in CT images is required. This study aimed to quantitatively evaluate fibrotic lesions in CT images using homology-based image analysis.</p><p><strong>Methods: </strong>We collected publicly available CT images comprising 47 fibrotic images and 36 non-fibrotic images. The homology-profile (HP) image analysis method provides b0 and b1 profiles, indicating the number of isolated components and holes in a binary image. We locally applied the HP method to the CT image and generated homology-based feature (HF) maps as resultant images. The collected images were randomly divided into the tuning dataset and the testing dataset. The cut-off value for classifying the HF map for fibrotic or non-fibrotic images was defined using receiver operating characteristic (ROC) analysis with the tuning dataset. This cut-off value was evaluated using the testing dataset with accuracy, sensitivity, specificity, and precision.</p><p><strong>Results: </strong>We successfully visualized the quantification of fibrotic lesions in the HF map. The b0 HF map was more suitable for quantifying fibrotic lesions than b1. The mean cut-off value of the b0 HF map was 199, with all performances achieved at 1.0. Furthermore, the classification of the b0 HF map for fibrotic or lung cancer images achieved all maximum performances at 1.0.</p><p><strong>Conclusion: </strong>This study demonstrated the feasibility of using the HF in quantitatively evaluating fibrotic lesions in CT images. Our proposed HP-based method can also be promising in quantifying the fibrotic lesions of patients with IIPs, which can be applicable to assist the diagnosis of IIPs.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"1703-1711"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350597/pdf/","citationCount":"0","resultStr":"{\"title\":\"Homology-feature-assisted quantification of fibrotic lesions in computed tomography images: a proof of concept for CT image feature-based prediction for gene-expression-distribution.\",\"authors\":\"Kentaro Doi, Hodaka Numasaki, Yusuke Anetai, Yayoi Natsume-Kitatani\",\"doi\":\"10.1007/s11548-025-03428-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Computed tomography (CT) image is promising for diagnosing of interstitial idiopathic pneumonias (IIPs); however, quantification of IIPs lesions in CT images is required. This study aimed to quantitatively evaluate fibrotic lesions in CT images using homology-based image analysis.</p><p><strong>Methods: </strong>We collected publicly available CT images comprising 47 fibrotic images and 36 non-fibrotic images. The homology-profile (HP) image analysis method provides b0 and b1 profiles, indicating the number of isolated components and holes in a binary image. We locally applied the HP method to the CT image and generated homology-based feature (HF) maps as resultant images. The collected images were randomly divided into the tuning dataset and the testing dataset. The cut-off value for classifying the HF map for fibrotic or non-fibrotic images was defined using receiver operating characteristic (ROC) analysis with the tuning dataset. This cut-off value was evaluated using the testing dataset with accuracy, sensitivity, specificity, and precision.</p><p><strong>Results: </strong>We successfully visualized the quantification of fibrotic lesions in the HF map. The b0 HF map was more suitable for quantifying fibrotic lesions than b1. The mean cut-off value of the b0 HF map was 199, with all performances achieved at 1.0. Furthermore, the classification of the b0 HF map for fibrotic or lung cancer images achieved all maximum performances at 1.0.</p><p><strong>Conclusion: </strong>This study demonstrated the feasibility of using the HF in quantitatively evaluating fibrotic lesions in CT images. Our proposed HP-based method can also be promising in quantifying the fibrotic lesions of patients with IIPs, which can be applicable to assist the diagnosis of IIPs.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"1703-1711\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350597/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03428-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03428-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Homology-feature-assisted quantification of fibrotic lesions in computed tomography images: a proof of concept for CT image feature-based prediction for gene-expression-distribution.
Purpose: Computed tomography (CT) image is promising for diagnosing of interstitial idiopathic pneumonias (IIPs); however, quantification of IIPs lesions in CT images is required. This study aimed to quantitatively evaluate fibrotic lesions in CT images using homology-based image analysis.
Methods: We collected publicly available CT images comprising 47 fibrotic images and 36 non-fibrotic images. The homology-profile (HP) image analysis method provides b0 and b1 profiles, indicating the number of isolated components and holes in a binary image. We locally applied the HP method to the CT image and generated homology-based feature (HF) maps as resultant images. The collected images were randomly divided into the tuning dataset and the testing dataset. The cut-off value for classifying the HF map for fibrotic or non-fibrotic images was defined using receiver operating characteristic (ROC) analysis with the tuning dataset. This cut-off value was evaluated using the testing dataset with accuracy, sensitivity, specificity, and precision.
Results: We successfully visualized the quantification of fibrotic lesions in the HF map. The b0 HF map was more suitable for quantifying fibrotic lesions than b1. The mean cut-off value of the b0 HF map was 199, with all performances achieved at 1.0. Furthermore, the classification of the b0 HF map for fibrotic or lung cancer images achieved all maximum performances at 1.0.
Conclusion: This study demonstrated the feasibility of using the HF in quantitatively evaluating fibrotic lesions in CT images. Our proposed HP-based method can also be promising in quantifying the fibrotic lesions of patients with IIPs, which can be applicable to assist the diagnosis of IIPs.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.