从整合转录组数据集推断基因通路关联:嗜热四膜虫的交互式基因网络探索者。

IF 2.8 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-05-27 eCollection Date: 2025-06-01 DOI:10.1093/nargab/lqaf067
Michael A Bertagna, Lydia J Bright, Fei Ye, Yu-Yang Jiang, Debolina Sarkar, Ajay Pradhan, Santosh Kumar, Shan Gao, Aaron P Turkewitz, Lev M Z Tsypin
{"title":"从整合转录组数据集推断基因通路关联:嗜热四膜虫的交互式基因网络探索者。","authors":"Michael A Bertagna, Lydia J Bright, Fei Ye, Yu-Yang Jiang, Debolina Sarkar, Ajay Pradhan, Santosh Kumar, Shan Gao, Aaron P Turkewitz, Lev M Z Tsypin","doi":"10.1093/nargab/lqaf067","DOIUrl":null,"url":null,"abstract":"<p><p>Although an established model organism, <i>Tetrahymena thermophila</i> remains comparatively inaccessible to high throughput screens, and alternative bioinformatic approaches still rely on unconnected datasets and outdated algorithms. Here, we report a new approach to consolidating RNA-seq and microarray data based on a systematic exploration of parameters and computational controls, enabling us to infer functional gene associations from their co-expression patterns. To illustrate the power of this approach, we took advantage of new data regarding a previously studied pathway, the biogenesis of a secretory organelle called the mucocyst. Our untargeted clustering approach recovered over 80% of the genes that were previously verified to play a role in mucocyst biogenesis. Furthermore, we tested four new genes that we predicted to be mucocyst-associated based on their co-expression and found that knocking out each of them results in mucocyst secretion defects. We also found that our approach succeeds in clustering genes associated with several other cellular pathways that we evaluated based on prior literature. We present the <i>Tetrahymena</i> Gene Network Explorer (TGNE) as an interactive tool for genetic hypothesis generation and functional annotation in this organism and as a framework for building similar tools for other systems.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 2","pages":"lqaf067"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107436/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inferring gene-pathway associations from consolidated transcriptome datasets: an interactive gene network explorer for <i>Tetrahymena thermophila</i>.\",\"authors\":\"Michael A Bertagna, Lydia J Bright, Fei Ye, Yu-Yang Jiang, Debolina Sarkar, Ajay Pradhan, Santosh Kumar, Shan Gao, Aaron P Turkewitz, Lev M Z Tsypin\",\"doi\":\"10.1093/nargab/lqaf067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although an established model organism, <i>Tetrahymena thermophila</i> remains comparatively inaccessible to high throughput screens, and alternative bioinformatic approaches still rely on unconnected datasets and outdated algorithms. Here, we report a new approach to consolidating RNA-seq and microarray data based on a systematic exploration of parameters and computational controls, enabling us to infer functional gene associations from their co-expression patterns. To illustrate the power of this approach, we took advantage of new data regarding a previously studied pathway, the biogenesis of a secretory organelle called the mucocyst. Our untargeted clustering approach recovered over 80% of the genes that were previously verified to play a role in mucocyst biogenesis. Furthermore, we tested four new genes that we predicted to be mucocyst-associated based on their co-expression and found that knocking out each of them results in mucocyst secretion defects. We also found that our approach succeeds in clustering genes associated with several other cellular pathways that we evaluated based on prior literature. We present the <i>Tetrahymena</i> Gene Network Explorer (TGNE) as an interactive tool for genetic hypothesis generation and functional annotation in this organism and as a framework for building similar tools for other systems.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"7 2\",\"pages\":\"lqaf067\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107436/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqaf067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

尽管嗜热四膜虫是一种已建立的模式生物,但高通量筛选仍然相对难以获得,而替代的生物信息学方法仍然依赖于未连接的数据集和过时的算法。在这里,我们报告了一种基于系统探索参数和计算控制来整合RNA-seq和微阵列数据的新方法,使我们能够从它们的共表达模式推断功能基因关联。为了说明这种方法的力量,我们利用了关于先前研究途径的新数据,即称为粘液囊的分泌细胞器的生物发生。我们的非靶向聚类方法恢复了80%以上的基因,这些基因以前被证实在粘液囊肿生物发生中起作用。此外,我们测试了四个新的基因,根据它们的共表达,我们预测它们与粘液囊肿相关,并发现敲除它们中的每一个都会导致粘液囊肿分泌缺陷。我们还发现,我们的方法成功地聚类了与其他几种细胞通路相关的基因,我们基于先前的文献对这些基因进行了评估。我们提出了四膜虫基因网络浏览器(TGNE)作为遗传假设生成和功能注释的交互式工具,并作为为其他系统构建类似工具的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring gene-pathway associations from consolidated transcriptome datasets: an interactive gene network explorer for Tetrahymena thermophila.

Although an established model organism, Tetrahymena thermophila remains comparatively inaccessible to high throughput screens, and alternative bioinformatic approaches still rely on unconnected datasets and outdated algorithms. Here, we report a new approach to consolidating RNA-seq and microarray data based on a systematic exploration of parameters and computational controls, enabling us to infer functional gene associations from their co-expression patterns. To illustrate the power of this approach, we took advantage of new data regarding a previously studied pathway, the biogenesis of a secretory organelle called the mucocyst. Our untargeted clustering approach recovered over 80% of the genes that were previously verified to play a role in mucocyst biogenesis. Furthermore, we tested four new genes that we predicted to be mucocyst-associated based on their co-expression and found that knocking out each of them results in mucocyst secretion defects. We also found that our approach succeeds in clustering genes associated with several other cellular pathways that we evaluated based on prior literature. We present the Tetrahymena Gene Network Explorer (TGNE) as an interactive tool for genetic hypothesis generation and functional annotation in this organism and as a framework for building similar tools for other systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信