{"title":"基于网络的生物医学多组学数据分析。","authors":"Rachit Kumar, Joseph D Romano, Marylyn D Ritchie","doi":"10.1186/s13040-025-00452-x","DOIUrl":null,"url":null,"abstract":"<p><p>Network representations of data are designed to encode relationships between concepts as sets of edges between nodes. Human biology is inherently complex and is represented by data that often exists in a hierarchical nature. One canonical example is the relationship that exists within and between various -omics datasets, including genomics, transcriptomics, and proteomics, among others. Encoding such data in a network-based or graph-based representation allows the explicit incorporation of such relationships into various biomedical big data tasks, including (but not limited to) disease subtyping, interaction prediction, biomarker identification, and patient classification. This review will present various existing approaches in using network representations and analysis of data in multiomics in the framework of deep learning and machine learning approaches, subdivided into supervised and unsupervised approaches, to identify benefits and drawbacks of various approaches as well as the possible next steps for the field.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"37"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117783/pdf/","citationCount":"0","resultStr":"{\"title\":\"Network-based analyses of multiomics data in biomedicine.\",\"authors\":\"Rachit Kumar, Joseph D Romano, Marylyn D Ritchie\",\"doi\":\"10.1186/s13040-025-00452-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Network representations of data are designed to encode relationships between concepts as sets of edges between nodes. Human biology is inherently complex and is represented by data that often exists in a hierarchical nature. One canonical example is the relationship that exists within and between various -omics datasets, including genomics, transcriptomics, and proteomics, among others. Encoding such data in a network-based or graph-based representation allows the explicit incorporation of such relationships into various biomedical big data tasks, including (but not limited to) disease subtyping, interaction prediction, biomarker identification, and patient classification. This review will present various existing approaches in using network representations and analysis of data in multiomics in the framework of deep learning and machine learning approaches, subdivided into supervised and unsupervised approaches, to identify benefits and drawbacks of various approaches as well as the possible next steps for the field.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"18 1\",\"pages\":\"37\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117783/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-025-00452-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00452-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Network-based analyses of multiomics data in biomedicine.
Network representations of data are designed to encode relationships between concepts as sets of edges between nodes. Human biology is inherently complex and is represented by data that often exists in a hierarchical nature. One canonical example is the relationship that exists within and between various -omics datasets, including genomics, transcriptomics, and proteomics, among others. Encoding such data in a network-based or graph-based representation allows the explicit incorporation of such relationships into various biomedical big data tasks, including (but not limited to) disease subtyping, interaction prediction, biomarker identification, and patient classification. This review will present various existing approaches in using network representations and analysis of data in multiomics in the framework of deep learning and machine learning approaches, subdivided into supervised and unsupervised approaches, to identify benefits and drawbacks of various approaches as well as the possible next steps for the field.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.