Victor Tse, Martin Guiterrez, Jill Townley, Jonathan Romano, Jennifer Pearl, Guillermo Chacaltana, Eterna Players, Rhiju Das, Jeremy Sanford, Michael Stone
{"title":"RNA救援——通过社区科学设计剪接调节的反义寡核苷酸。","authors":"Victor Tse, Martin Guiterrez, Jill Townley, Jonathan Romano, Jennifer Pearl, Guillermo Chacaltana, Eterna Players, Rhiju Das, Jeremy Sanford, Michael Stone","doi":"10.1261/rna.080288.124","DOIUrl":null,"url":null,"abstract":"<p><p>Splice-modulating antisense oligonucleotides (ASOs) are precision RNA-based drugs that are becoming an established modality to treat human disease. Previously, we reported the discovery of ASOs that target a novel, putative intronic RNA structure to rescue splicing of multiple pathogenic variants of F8 exon 16 that cause hemophilia A. However, the conventional approach to discovering splice-modulating ASOs is both laborious and expensive. Here, we describe a novel approach that integrates data-driven RNA structure prediction and community science to discover splice-modulating ASOs. Using a splicing-deficient pathogenic variant of F8 exon 16 as a model, we show that 25% of the top-scoring molecules designed in the Eterna OpenASO challenge have a statistically significant impact on enhancing exon 16 splicing. Additionally, we show that a distinct combination of ASOs designed by Eterna players can additively enhance the inclusion of the splicing-deficient exon 16 variant. Together, our data suggests that crowdsourcing designs from a community of citizen scientists may accelerate and complement traditional avenues for the discovery of splice-modulating ASOs with potential to treat human disease.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OpenASO: RNA Rescue - designing splice-modulating antisense oligonucleotides through community science.\",\"authors\":\"Victor Tse, Martin Guiterrez, Jill Townley, Jonathan Romano, Jennifer Pearl, Guillermo Chacaltana, Eterna Players, Rhiju Das, Jeremy Sanford, Michael Stone\",\"doi\":\"10.1261/rna.080288.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Splice-modulating antisense oligonucleotides (ASOs) are precision RNA-based drugs that are becoming an established modality to treat human disease. Previously, we reported the discovery of ASOs that target a novel, putative intronic RNA structure to rescue splicing of multiple pathogenic variants of F8 exon 16 that cause hemophilia A. However, the conventional approach to discovering splice-modulating ASOs is both laborious and expensive. Here, we describe a novel approach that integrates data-driven RNA structure prediction and community science to discover splice-modulating ASOs. Using a splicing-deficient pathogenic variant of F8 exon 16 as a model, we show that 25% of the top-scoring molecules designed in the Eterna OpenASO challenge have a statistically significant impact on enhancing exon 16 splicing. Additionally, we show that a distinct combination of ASOs designed by Eterna players can additively enhance the inclusion of the splicing-deficient exon 16 variant. Together, our data suggests that crowdsourcing designs from a community of citizen scientists may accelerate and complement traditional avenues for the discovery of splice-modulating ASOs with potential to treat human disease.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080288.124\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080288.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
OpenASO: RNA Rescue - designing splice-modulating antisense oligonucleotides through community science.
Splice-modulating antisense oligonucleotides (ASOs) are precision RNA-based drugs that are becoming an established modality to treat human disease. Previously, we reported the discovery of ASOs that target a novel, putative intronic RNA structure to rescue splicing of multiple pathogenic variants of F8 exon 16 that cause hemophilia A. However, the conventional approach to discovering splice-modulating ASOs is both laborious and expensive. Here, we describe a novel approach that integrates data-driven RNA structure prediction and community science to discover splice-modulating ASOs. Using a splicing-deficient pathogenic variant of F8 exon 16 as a model, we show that 25% of the top-scoring molecules designed in the Eterna OpenASO challenge have a statistically significant impact on enhancing exon 16 splicing. Additionally, we show that a distinct combination of ASOs designed by Eterna players can additively enhance the inclusion of the splicing-deficient exon 16 variant. Together, our data suggests that crowdsourcing designs from a community of citizen scientists may accelerate and complement traditional avenues for the discovery of splice-modulating ASOs with potential to treat human disease.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.