界面模拟肽靶向SARS-CoV-2 NSP12-NSP8 RdRp复合物的治疗应用

IF 12 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mark Anthony B Casel, Jae-Woo Ahn, Hyunjoon Kim, Isaac Choi, Seung-Gyu Jang, Rare Rollon, Ho-Young Ji, Mina Yu, Seong Cheol Min, Min-Suk Song, Young Ki Choi
{"title":"界面模拟肽靶向SARS-CoV-2 NSP12-NSP8 RdRp复合物的治疗应用","authors":"Mark Anthony B Casel, Jae-Woo Ahn, Hyunjoon Kim, Isaac Choi, Seung-Gyu Jang, Rare Rollon, Ho-Young Ji, Mina Yu, Seong Cheol Min, Min-Suk Song, Young Ki Choi","doi":"10.1016/j.ymthe.2025.05.028","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication depends on the NSP12-NSP8-NSP7 complex, which plays a critical role in enhancing RNA-dependent RNA polymerase (RdRp) activity. NSP8 is particularly essential, stabilizing the RdRp complex and supporting viral replication across diverse variants. To disrupt this crucial interaction, we designed four NSP8-derived peptides-N8-Pepα, N8-Pepα_cyc, N8-Pepβ, and N8-PepβD-targeting a key hotspot region within the NSP12-NSP8 interface that governs complex stability and processivity. In vitro assays demonstrated that these peptides effectively inhibit RdRp activity by disrupting the NSP12-NSP8 interaction, leading to significant reductions in SARS-CoV-2 replication in Vero E6 cells. Notably, intranasal administration of N8-Pepα or N8-Pepα_cyc (25 mg/kg) in Balb/c mice provided robust antiviral protection, alleviating weight loss and reducing mortality following challenge with a mouse-adapted SARS-CoV-2 strain. Both prophylactic and therapeutic treatments significantly lowered viral titers and minimized pathological damage in the nasal turbinates and lungs. These results highlight the NSP12-NSP8 interface as a novel and highly conserved target for antiviral therapy and establish NSP8-derived peptides, particularly N8-Pepα and N8-Pepα_cyc, as promising candidates for inhibiting RdRp complex formation and controlling SARS-CoV-2 replication.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic applications of interface-mimicking peptides for targeting the SARS-CoV-2 NSP12-NSP8 RdRp complex.\",\"authors\":\"Mark Anthony B Casel, Jae-Woo Ahn, Hyunjoon Kim, Isaac Choi, Seung-Gyu Jang, Rare Rollon, Ho-Young Ji, Mina Yu, Seong Cheol Min, Min-Suk Song, Young Ki Choi\",\"doi\":\"10.1016/j.ymthe.2025.05.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication depends on the NSP12-NSP8-NSP7 complex, which plays a critical role in enhancing RNA-dependent RNA polymerase (RdRp) activity. NSP8 is particularly essential, stabilizing the RdRp complex and supporting viral replication across diverse variants. To disrupt this crucial interaction, we designed four NSP8-derived peptides-N8-Pepα, N8-Pepα_cyc, N8-Pepβ, and N8-PepβD-targeting a key hotspot region within the NSP12-NSP8 interface that governs complex stability and processivity. In vitro assays demonstrated that these peptides effectively inhibit RdRp activity by disrupting the NSP12-NSP8 interaction, leading to significant reductions in SARS-CoV-2 replication in Vero E6 cells. Notably, intranasal administration of N8-Pepα or N8-Pepα_cyc (25 mg/kg) in Balb/c mice provided robust antiviral protection, alleviating weight loss and reducing mortality following challenge with a mouse-adapted SARS-CoV-2 strain. Both prophylactic and therapeutic treatments significantly lowered viral titers and minimized pathological damage in the nasal turbinates and lungs. These results highlight the NSP12-NSP8 interface as a novel and highly conserved target for antiviral therapy and establish NSP8-derived peptides, particularly N8-Pepα and N8-Pepα_cyc, as promising candidates for inhibiting RdRp complex formation and controlling SARS-CoV-2 replication.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2025.05.028\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.05.028","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)的复制依赖于NSP12-NSP8-NSP7复合体,该复合体在增强RNA依赖性RNA聚合酶(RdRp)活性方面发挥关键作用。NSP8尤其重要,它稳定RdRp复合体并支持病毒跨不同变体的复制。为了破坏这种关键的相互作用,我们设计了四种nsp8衍生的肽- n8 - pepα, N8-Pepα_cyc, N8-Pepβ和N8-Pepβ d -靶向NSP12-NSP8界面内控制复杂稳定性和加工能力的关键“热点”区域。体外实验表明,这些肽通过破坏NSP12-NSP8相互作用有效抑制RdRp活性,导致Vero E6细胞中SARS-CoV-2复制显著减少。值得注意的是,Balb/c小鼠鼻内给予N8-Pepα或N8-Pepα_cyc (25 mg/kg)可提供强大的抗病毒保护,减轻小鼠适应SARS-CoV-2菌株攻击后的体重减轻和死亡率降低。预防性和治疗性治疗均可显著降低病毒滴度,并将鼻鼻甲和肺部的病理损伤降至最低。这些结果表明NSP12-NSP8界面是抗病毒治疗的一个新的高度保守的靶点,并建立了nsp8衍生肽,特别是N8-Pepα和N8-Pepα_cyc,作为抑制RdRp复合物形成和控制SARS-CoV-2复制的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Therapeutic applications of interface-mimicking peptides for targeting the SARS-CoV-2 NSP12-NSP8 RdRp complex.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication depends on the NSP12-NSP8-NSP7 complex, which plays a critical role in enhancing RNA-dependent RNA polymerase (RdRp) activity. NSP8 is particularly essential, stabilizing the RdRp complex and supporting viral replication across diverse variants. To disrupt this crucial interaction, we designed four NSP8-derived peptides-N8-Pepα, N8-Pepα_cyc, N8-Pepβ, and N8-PepβD-targeting a key hotspot region within the NSP12-NSP8 interface that governs complex stability and processivity. In vitro assays demonstrated that these peptides effectively inhibit RdRp activity by disrupting the NSP12-NSP8 interaction, leading to significant reductions in SARS-CoV-2 replication in Vero E6 cells. Notably, intranasal administration of N8-Pepα or N8-Pepα_cyc (25 mg/kg) in Balb/c mice provided robust antiviral protection, alleviating weight loss and reducing mortality following challenge with a mouse-adapted SARS-CoV-2 strain. Both prophylactic and therapeutic treatments significantly lowered viral titers and minimized pathological damage in the nasal turbinates and lungs. These results highlight the NSP12-NSP8 interface as a novel and highly conserved target for antiviral therapy and establish NSP8-derived peptides, particularly N8-Pepα and N8-Pepα_cyc, as promising candidates for inhibiting RdRp complex formation and controlling SARS-CoV-2 replication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信