NUDT21乳酸化重编程可选择的聚腺苷化以促进铜变形抵抗。

IF 13 1区 生物学 Q1 CELL BIOLOGY
Jinlong Lin, Yixin Yin, Jinghua Cao, Yiyang Zhang, Jiewei Chen, Rixin Chen, Bingxu Zou, Cijun Huang, Yongrui Lv, Shuidan Xu, Han Yang, Peng Lin, Dan Xie
{"title":"NUDT21乳酸化重编程可选择的聚腺苷化以促进铜变形抵抗。","authors":"Jinlong Lin, Yixin Yin, Jinghua Cao, Yiyang Zhang, Jiewei Chen, Rixin Chen, Bingxu Zou, Cijun Huang, Yongrui Lv, Shuidan Xu, Han Yang, Peng Lin, Dan Xie","doi":"10.1038/s41421-025-00804-1","DOIUrl":null,"url":null,"abstract":"<p><p>Alternative polyadenylation (APA) is critical for shaping transcriptome diversity and modulating cancer therapeutic resistance. While lactate is a well-established metabolic signal in cancer progression, its role in APA regulation remains unclear. Here, we demonstrate that L-lactate-induced lactylation of NUDT21 drives transcriptomic reprogramming through APA modulation. NUDT21 lactylation enhances its interaction with CPSF6, facilitating CFIm complex formation and inducing 3' untranslated region (UTR) lengthening of FDX1. Extension of the FDX1 3' UTR attenuates its protein output, thereby conferring resistance to cuproptosis in esophageal squamous cell carcinoma (ESCC). Furthermore, we identify AARS1 as the lactylation \"writer\" catalyzing NUDT21 K23 lactylation, and HDAC2 as its enzymatic \"eraser\". Clinically, elevated levels of both LDHA and NUDT21, as well as increased K23-lactylated NUDT21, are associated with reduced FDX1 expression and worse prognosis in ESCC patients. Notably, combined targeting of the lactate-NUDT21-FDX1-cuproptosis axis with the clinical LDHA inhibitor stiripentol and the copper ionophore elesclomol synergistically suppressed tumor growth. Collectively, our work identifies lactylated NUDT21 as a critical factor linking cellular metabolism to APA and proposes a promising therapeutic strategy for ESCC treatment.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"52"},"PeriodicalIF":13.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116747/pdf/","citationCount":"0","resultStr":"{\"title\":\"NUDT21 lactylation reprograms alternative polyadenylation to promote cuproptosis resistance.\",\"authors\":\"Jinlong Lin, Yixin Yin, Jinghua Cao, Yiyang Zhang, Jiewei Chen, Rixin Chen, Bingxu Zou, Cijun Huang, Yongrui Lv, Shuidan Xu, Han Yang, Peng Lin, Dan Xie\",\"doi\":\"10.1038/s41421-025-00804-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alternative polyadenylation (APA) is critical for shaping transcriptome diversity and modulating cancer therapeutic resistance. While lactate is a well-established metabolic signal in cancer progression, its role in APA regulation remains unclear. Here, we demonstrate that L-lactate-induced lactylation of NUDT21 drives transcriptomic reprogramming through APA modulation. NUDT21 lactylation enhances its interaction with CPSF6, facilitating CFIm complex formation and inducing 3' untranslated region (UTR) lengthening of FDX1. Extension of the FDX1 3' UTR attenuates its protein output, thereby conferring resistance to cuproptosis in esophageal squamous cell carcinoma (ESCC). Furthermore, we identify AARS1 as the lactylation \\\"writer\\\" catalyzing NUDT21 K23 lactylation, and HDAC2 as its enzymatic \\\"eraser\\\". Clinically, elevated levels of both LDHA and NUDT21, as well as increased K23-lactylated NUDT21, are associated with reduced FDX1 expression and worse prognosis in ESCC patients. Notably, combined targeting of the lactate-NUDT21-FDX1-cuproptosis axis with the clinical LDHA inhibitor stiripentol and the copper ionophore elesclomol synergistically suppressed tumor growth. Collectively, our work identifies lactylated NUDT21 as a critical factor linking cellular metabolism to APA and proposes a promising therapeutic strategy for ESCC treatment.</p>\",\"PeriodicalId\":9674,\"journal\":{\"name\":\"Cell Discovery\",\"volume\":\"11 1\",\"pages\":\"52\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116747/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41421-025-00804-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-025-00804-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

选择性多聚腺苷化(APA)是塑造转录组多样性和调节癌症治疗耐药性的关键。虽然乳酸在癌症进展中是一个公认的代谢信号,但其在APA调节中的作用尚不清楚。在这里,我们证明了l -乳酸诱导的NUDT21的乳酸化通过APA调节驱动转录组重编程。NUDT21的乳酸化增强了其与CPSF6的相互作用,促进了CFIm复合物的形成,诱导FDX1的3'非翻译区(UTR)延长。FDX1 3' UTR的延长减少了其蛋白输出,从而赋予食管鳞状细胞癌(ESCC)对铜增生的抗性。此外,我们发现AARS1是催化NUDT21 K23乳酸化的“书写者”,而HDAC2是其酶促“擦除者”。在临床上,LDHA和NUDT21水平升高以及k23 -乳酸化NUDT21水平升高与ESCC患者FDX1表达降低和预后恶化相关。值得注意的是,乳酸- nudt21 - fdx1 - cuprotosis轴与临床LDHA抑制剂stiripentool和铜离子载体elesclomol联合靶向可协同抑制肿瘤生长。总的来说,我们的工作确定了乳酸化NUDT21是连接细胞代谢与APA的关键因素,并提出了一种有希望的ESCC治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUDT21 lactylation reprograms alternative polyadenylation to promote cuproptosis resistance.

Alternative polyadenylation (APA) is critical for shaping transcriptome diversity and modulating cancer therapeutic resistance. While lactate is a well-established metabolic signal in cancer progression, its role in APA regulation remains unclear. Here, we demonstrate that L-lactate-induced lactylation of NUDT21 drives transcriptomic reprogramming through APA modulation. NUDT21 lactylation enhances its interaction with CPSF6, facilitating CFIm complex formation and inducing 3' untranslated region (UTR) lengthening of FDX1. Extension of the FDX1 3' UTR attenuates its protein output, thereby conferring resistance to cuproptosis in esophageal squamous cell carcinoma (ESCC). Furthermore, we identify AARS1 as the lactylation "writer" catalyzing NUDT21 K23 lactylation, and HDAC2 as its enzymatic "eraser". Clinically, elevated levels of both LDHA and NUDT21, as well as increased K23-lactylated NUDT21, are associated with reduced FDX1 expression and worse prognosis in ESCC patients. Notably, combined targeting of the lactate-NUDT21-FDX1-cuproptosis axis with the clinical LDHA inhibitor stiripentol and the copper ionophore elesclomol synergistically suppressed tumor growth. Collectively, our work identifies lactylated NUDT21 as a critical factor linking cellular metabolism to APA and proposes a promising therapeutic strategy for ESCC treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信