应用电场有效控制纳米水中的热传递:分子动力学研究。

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-06-05 Epub Date: 2025-05-27 DOI:10.1021/acs.jpcb.5c00928
Bing-Bing Wang, Wen-Qing Guo, Jie-Wen Deng
{"title":"应用电场有效控制纳米水中的热传递:分子动力学研究。","authors":"Bing-Bing Wang, Wen-Qing Guo, Jie-Wen Deng","doi":"10.1021/acs.jpcb.5c00928","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal properties of water confined at the nanoscale exhibit variations compared with bulk water. The dynamics of water molecules is altered when an electric field is applied, which influences the thermal transport in nanoconfined water. To explore this phenomenon, we conducted molecular dynamics simulations to investigate the thermal transport of confined water in nanochannels under a uniform electric field. The findings indicate that the thermal conductivity of nanoconfined water decreases when the electric field strength is below 4 V nm<sup>-1</sup> in the direction parallel to the solid-liquid interface of the nanochannel or below 9 V nm<sup>-1</sup> in the direction perpendicular to the solid-liquid interface. This decrease can be attributed to the limited thermal diffusion of water molecules caused by the electric force. On the contrary, when the electric field strength surpasses 4 V nm<sup>-1</sup> or 9 V nm<sup>-1</sup>, the thermal conductivity of nanoconfined water experiences a substantial increase due to the freezing of water molecules induced by the strong electric field. The interfacial thermal resistance decreases on the heat source side, while it increases with increasing electric field strength on the cold source side. Furthermore, applying an electric field parallel to the nanochannel facilitates the electro-freezing of water molecules more effectively, resulting in a greater enhancement of thermal transport in nanoconfined water.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"5550-5560"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Control of Thermal Transfer in Nanoconfined Water by Applying an Electric Field: A Molecular Dynamics Study.\",\"authors\":\"Bing-Bing Wang, Wen-Qing Guo, Jie-Wen Deng\",\"doi\":\"10.1021/acs.jpcb.5c00928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermal properties of water confined at the nanoscale exhibit variations compared with bulk water. The dynamics of water molecules is altered when an electric field is applied, which influences the thermal transport in nanoconfined water. To explore this phenomenon, we conducted molecular dynamics simulations to investigate the thermal transport of confined water in nanochannels under a uniform electric field. The findings indicate that the thermal conductivity of nanoconfined water decreases when the electric field strength is below 4 V nm<sup>-1</sup> in the direction parallel to the solid-liquid interface of the nanochannel or below 9 V nm<sup>-1</sup> in the direction perpendicular to the solid-liquid interface. This decrease can be attributed to the limited thermal diffusion of water molecules caused by the electric force. On the contrary, when the electric field strength surpasses 4 V nm<sup>-1</sup> or 9 V nm<sup>-1</sup>, the thermal conductivity of nanoconfined water experiences a substantial increase due to the freezing of water molecules induced by the strong electric field. The interfacial thermal resistance decreases on the heat source side, while it increases with increasing electric field strength on the cold source side. Furthermore, applying an electric field parallel to the nanochannel facilitates the electro-freezing of water molecules more effectively, resulting in a greater enhancement of thermal transport in nanoconfined water.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"5550-5560\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.5c00928\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c00928","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

与散装水相比,纳米尺度水的热性能表现出变化。施加电场会改变水分子的动力学,从而影响纳米密闭水中的热输运。为了探索这一现象,我们进行了分子动力学模拟,研究了均匀电场下纳米通道中承压水的热输运。结果表明:当电场强度在平行于纳米通道固液界面方向上小于4 V nm-1或垂直于固液界面方向上小于9 V nm-1时,纳米封闭水的导热系数降低;这种减少可归因于电磁力引起的水分子的有限热扩散。相反,当电场强度超过4 V nm-1或9 V nm-1时,由于强电场导致水分子冻结,纳米密闭水的导热系数大幅增加。热源侧界面热阻减小,冷源侧界面热阻随着电场强度的增大而增大。此外,施加平行于纳米通道的电场可以更有效地促进水分子的电冻结,从而大大增强纳米密闭水中的热传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Control of Thermal Transfer in Nanoconfined Water by Applying an Electric Field: A Molecular Dynamics Study.

Thermal properties of water confined at the nanoscale exhibit variations compared with bulk water. The dynamics of water molecules is altered when an electric field is applied, which influences the thermal transport in nanoconfined water. To explore this phenomenon, we conducted molecular dynamics simulations to investigate the thermal transport of confined water in nanochannels under a uniform electric field. The findings indicate that the thermal conductivity of nanoconfined water decreases when the electric field strength is below 4 V nm-1 in the direction parallel to the solid-liquid interface of the nanochannel or below 9 V nm-1 in the direction perpendicular to the solid-liquid interface. This decrease can be attributed to the limited thermal diffusion of water molecules caused by the electric force. On the contrary, when the electric field strength surpasses 4 V nm-1 or 9 V nm-1, the thermal conductivity of nanoconfined water experiences a substantial increase due to the freezing of water molecules induced by the strong electric field. The interfacial thermal resistance decreases on the heat source side, while it increases with increasing electric field strength on the cold source side. Furthermore, applying an electric field parallel to the nanochannel facilitates the electro-freezing of water molecules more effectively, resulting in a greater enhancement of thermal transport in nanoconfined water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信