{"title":"一自由度有理机构的正运动学、逆运动学和运动规划","authors":"Daniel Huczala , Andreas Mair , Tomas Postulka","doi":"10.1016/j.mechmachtheory.2025.106074","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a set of algorithms that deal with trajectory planning of rational single-loop mechanisms with one degree of freedom (DoF). Benefiting from a dual quaternion representation of a rational motion, a formula for direct (forward) kinematics, a numerical inverse kinematics algorithm, and the generation of a driving-joint trajectory are provided. A novel approach using the Gauss–Newton search for the one-parameter inverse kinematics problem is presented. Additionally, a method for performing smooth equidistant travel of the tool is provided by applying arc-length reparameterization. This general approach can be applied to one-DoF mechanisms with four to seven joints characterized by a rational motion, without any additional geometrical analysis. An experiment was performed to demonstrate the usage in a laboratory setup.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"213 ","pages":"Article 106074"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct kinematics, inverse kinematics, and motion planning of 1-DoF rational linkages\",\"authors\":\"Daniel Huczala , Andreas Mair , Tomas Postulka\",\"doi\":\"10.1016/j.mechmachtheory.2025.106074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a set of algorithms that deal with trajectory planning of rational single-loop mechanisms with one degree of freedom (DoF). Benefiting from a dual quaternion representation of a rational motion, a formula for direct (forward) kinematics, a numerical inverse kinematics algorithm, and the generation of a driving-joint trajectory are provided. A novel approach using the Gauss–Newton search for the one-parameter inverse kinematics problem is presented. Additionally, a method for performing smooth equidistant travel of the tool is provided by applying arc-length reparameterization. This general approach can be applied to one-DoF mechanisms with four to seven joints characterized by a rational motion, without any additional geometrical analysis. An experiment was performed to demonstrate the usage in a laboratory setup.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"213 \",\"pages\":\"Article 106074\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X25001636\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25001636","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Direct kinematics, inverse kinematics, and motion planning of 1-DoF rational linkages
This study presents a set of algorithms that deal with trajectory planning of rational single-loop mechanisms with one degree of freedom (DoF). Benefiting from a dual quaternion representation of a rational motion, a formula for direct (forward) kinematics, a numerical inverse kinematics algorithm, and the generation of a driving-joint trajectory are provided. A novel approach using the Gauss–Newton search for the one-parameter inverse kinematics problem is presented. Additionally, a method for performing smooth equidistant travel of the tool is provided by applying arc-length reparameterization. This general approach can be applied to one-DoF mechanisms with four to seven joints characterized by a rational motion, without any additional geometrical analysis. An experiment was performed to demonstrate the usage in a laboratory setup.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry