AlTiHfNbTaZrN的渐进熵工程:通过晶格畸变和热力学动力学因素获得优异的热力学性能

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Hua D. Zhang , Jie Zhang , Li Chen , Yi Kong
{"title":"AlTiHfNbTaZrN的渐进熵工程:通过晶格畸变和热力学动力学因素获得优异的热力学性能","authors":"Hua D. Zhang ,&nbsp;Jie Zhang ,&nbsp;Li Chen ,&nbsp;Yi Kong","doi":"10.1016/j.jeurceramsoc.2025.117558","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy nitride coatings garnered significant attention by overcoming the earlier thermal decomposition of TiAlN. Combining DFT calculations and experimental studies, we demonstrate all AlTiHfNbTaZrN coatings adopt a rock salt structure, driven by energetic preference and entropy stabilizing. Increasing Me content (Me=Hf+Nb+Ta+Zr) enhances hardness progressively from ∼28.4 GPa of Al<sub>0.45</sub>Ti<sub>0.55</sub>N to ∼36.9 GPa of Al<sub>0.38</sub>Ti<sub>0.14</sub>(Me)<sub>0.48</sub>N, attributed to lattice distortion. Toughness improvements correlate with Ta/Nb-induced metallic bonding. Thermal stability improves with peak hardness at ∼37.9 GPa for Al<sub>0.38</sub>Ti<sub>0.14</sub>(Me)<sub>0.48</sub>N after annealing to 1100 °C, surpassing ∼32.8 GPa of Al<sub>0.45</sub>Ti<sub>0.55</sub>N after 900 °C. Decreased activation energies indicate no hysteretic diffusion effect with increased entropy and distortion, while Me substitution strengthens ionic bondings with nitrogen to offset lattice expansion and brings increased average diffusion energies for non-Al metal atoms. Furthermore, greater strain energy between c-AlN and parent nitrides hinders the precipitation of Al atoms. These entropy-engineered coatings outperform TiAlN, making them ideal for cutting tools.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 14","pages":"Article 117558"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive entropy engineering in AlTiHfNbTaZrN: Achieving superior thermomechanical properties through lattice distortion and thermodynamic kinetic factors\",\"authors\":\"Hua D. Zhang ,&nbsp;Jie Zhang ,&nbsp;Li Chen ,&nbsp;Yi Kong\",\"doi\":\"10.1016/j.jeurceramsoc.2025.117558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-entropy nitride coatings garnered significant attention by overcoming the earlier thermal decomposition of TiAlN. Combining DFT calculations and experimental studies, we demonstrate all AlTiHfNbTaZrN coatings adopt a rock salt structure, driven by energetic preference and entropy stabilizing. Increasing Me content (Me=Hf+Nb+Ta+Zr) enhances hardness progressively from ∼28.4 GPa of Al<sub>0.45</sub>Ti<sub>0.55</sub>N to ∼36.9 GPa of Al<sub>0.38</sub>Ti<sub>0.14</sub>(Me)<sub>0.48</sub>N, attributed to lattice distortion. Toughness improvements correlate with Ta/Nb-induced metallic bonding. Thermal stability improves with peak hardness at ∼37.9 GPa for Al<sub>0.38</sub>Ti<sub>0.14</sub>(Me)<sub>0.48</sub>N after annealing to 1100 °C, surpassing ∼32.8 GPa of Al<sub>0.45</sub>Ti<sub>0.55</sub>N after 900 °C. Decreased activation energies indicate no hysteretic diffusion effect with increased entropy and distortion, while Me substitution strengthens ionic bondings with nitrogen to offset lattice expansion and brings increased average diffusion energies for non-Al metal atoms. Furthermore, greater strain energy between c-AlN and parent nitrides hinders the precipitation of Al atoms. These entropy-engineered coatings outperform TiAlN, making them ideal for cutting tools.</div></div>\",\"PeriodicalId\":17408,\"journal\":{\"name\":\"Journal of The European Ceramic Society\",\"volume\":\"45 14\",\"pages\":\"Article 117558\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The European Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955221925003784\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925003784","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

高熵氮化物涂层克服了早期TiAlN的热分解,引起了人们的广泛关注。结合DFT计算和实验研究,我们证明所有AlTiHfNbTaZrN涂层都采用岩盐结构,由能量偏好和熵稳定驱动。随着Me含量(Me=Hf+Nb+Ta+Zr)的增加,由于晶格畸变,硬度从Al0.45Ti0.55N的~ 28.4 GPa逐渐提高到Al0.38Ti0.14(Me)0.48N的~ 36.9 GPa。韧性的提高与Ta/ nb诱导的金属结合有关。退火至1100℃后,Al0.38Ti0.14(Me)0.48N的热稳定性得到改善,峰值硬度为~ 37.9 GPa, 900℃后超过Al0.45Ti0.55N的~ 32.8 GPa。活化能降低表明没有迟滞扩散效应,熵和畸变增加,而Me取代增强了与氮的离子键,抵消了晶格膨胀,增加了非al金属原子的平均扩散能。此外,c-AlN与母体氮化物之间较大的应变能阻碍了Al原子的析出。这些熵工程涂层优于TiAlN,使其成为切削工具的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progressive entropy engineering in AlTiHfNbTaZrN: Achieving superior thermomechanical properties through lattice distortion and thermodynamic kinetic factors
High-entropy nitride coatings garnered significant attention by overcoming the earlier thermal decomposition of TiAlN. Combining DFT calculations and experimental studies, we demonstrate all AlTiHfNbTaZrN coatings adopt a rock salt structure, driven by energetic preference and entropy stabilizing. Increasing Me content (Me=Hf+Nb+Ta+Zr) enhances hardness progressively from ∼28.4 GPa of Al0.45Ti0.55N to ∼36.9 GPa of Al0.38Ti0.14(Me)0.48N, attributed to lattice distortion. Toughness improvements correlate with Ta/Nb-induced metallic bonding. Thermal stability improves with peak hardness at ∼37.9 GPa for Al0.38Ti0.14(Me)0.48N after annealing to 1100 °C, surpassing ∼32.8 GPa of Al0.45Ti0.55N after 900 °C. Decreased activation energies indicate no hysteretic diffusion effect with increased entropy and distortion, while Me substitution strengthens ionic bondings with nitrogen to offset lattice expansion and brings increased average diffusion energies for non-Al metal atoms. Furthermore, greater strain energy between c-AlN and parent nitrides hinders the precipitation of Al atoms. These entropy-engineered coatings outperform TiAlN, making them ideal for cutting tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信