用胴体重预测不同生理状态下毛羊的空体重

IF 1.6 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Ignacio Vázquez-Martínez , Rosario Salazar-Cuytun , Jesus Alberto Mezo-Solis , Darwin Nicolas Arcos-Alvarez , Antonio de Sousa Brito Neto , Caio Julio Lima Herbster , Elzania Sales Pereira , Alfonso Juventino Chay-Canul
{"title":"用胴体重预测不同生理状态下毛羊的空体重","authors":"Ignacio Vázquez-Martínez ,&nbsp;Rosario Salazar-Cuytun ,&nbsp;Jesus Alberto Mezo-Solis ,&nbsp;Darwin Nicolas Arcos-Alvarez ,&nbsp;Antonio de Sousa Brito Neto ,&nbsp;Caio Julio Lima Herbster ,&nbsp;Elzania Sales Pereira ,&nbsp;Alfonso Juventino Chay-Canul","doi":"10.1016/j.smallrumres.2025.107551","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of this study was to develop equations to predict empty body weight (EBW) by using fasting body weight (FBW) and hot carcass weight (HCW) for hair sheep in different physiological states. To generate the prediction models, a data set was composed of individual measurements from 278 sheep encompassing suckling males (21 Pelibuey and 15 Katahdin) and females (8 Pelibuey and 12 Katahdin) and growing males (55 Black Belly and 43 Katahdin) and females (56 Black Belly, 13 Dorper, 24 Katahdin, and 21 crossbreed Katahdin × Pelibuey). The coefficients obtained from the linear regression of EBW against FBW and EBW against HCW did not differ between sexes and among breeds (P &gt; 0.05). However, they were influenced by physiological stage (P &lt; 0.001). Four equations were generated for suckling and growing stages: EBW<sub>suckling</sub> = -0.15<sub>(± 0.04)</sub> + 0.91<sub>(± 0.02)</sub> × FBW (root mean square error (RMSE) = 0.96, R<sup>2</sup> = 0.99); EBW<sub>growing</sub> = -1.50<sub>(± 0.44)</sub> + 0.91<sub>(± 0.02)</sub> × FBW (RMSE = 0.96, R<sup>2</sup> = 0.99); EBW<sub>suckling</sub> = 1.84<sub>(± 0.69)</sub> + 1.46<sub>(± 0.06)</sub> × HCW (RMSE = 1.94, R<sup>2</sup> = 0.96); EBW<sub>growing</sub> = 5.93<sub>(± 0.72)</sub> + 1.46<sub>(± 0.06)</sub> × HCW (RMSE = 1.94, R<sup>2</sup> = 0.96). The results showed that sex and breed did not influence the linear regression of EBW as a function of FBW and HCW. However, the present study showed that models predicting EBW from FBW and HCW depended on physiological state.</div></div>","PeriodicalId":21758,"journal":{"name":"Small Ruminant Research","volume":"250 ","pages":"Article 107551"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of carcass weight for predicting empty body weight in hair sheep in different physiological states\",\"authors\":\"Ignacio Vázquez-Martínez ,&nbsp;Rosario Salazar-Cuytun ,&nbsp;Jesus Alberto Mezo-Solis ,&nbsp;Darwin Nicolas Arcos-Alvarez ,&nbsp;Antonio de Sousa Brito Neto ,&nbsp;Caio Julio Lima Herbster ,&nbsp;Elzania Sales Pereira ,&nbsp;Alfonso Juventino Chay-Canul\",\"doi\":\"10.1016/j.smallrumres.2025.107551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The objective of this study was to develop equations to predict empty body weight (EBW) by using fasting body weight (FBW) and hot carcass weight (HCW) for hair sheep in different physiological states. To generate the prediction models, a data set was composed of individual measurements from 278 sheep encompassing suckling males (21 Pelibuey and 15 Katahdin) and females (8 Pelibuey and 12 Katahdin) and growing males (55 Black Belly and 43 Katahdin) and females (56 Black Belly, 13 Dorper, 24 Katahdin, and 21 crossbreed Katahdin × Pelibuey). The coefficients obtained from the linear regression of EBW against FBW and EBW against HCW did not differ between sexes and among breeds (P &gt; 0.05). However, they were influenced by physiological stage (P &lt; 0.001). Four equations were generated for suckling and growing stages: EBW<sub>suckling</sub> = -0.15<sub>(± 0.04)</sub> + 0.91<sub>(± 0.02)</sub> × FBW (root mean square error (RMSE) = 0.96, R<sup>2</sup> = 0.99); EBW<sub>growing</sub> = -1.50<sub>(± 0.44)</sub> + 0.91<sub>(± 0.02)</sub> × FBW (RMSE = 0.96, R<sup>2</sup> = 0.99); EBW<sub>suckling</sub> = 1.84<sub>(± 0.69)</sub> + 1.46<sub>(± 0.06)</sub> × HCW (RMSE = 1.94, R<sup>2</sup> = 0.96); EBW<sub>growing</sub> = 5.93<sub>(± 0.72)</sub> + 1.46<sub>(± 0.06)</sub> × HCW (RMSE = 1.94, R<sup>2</sup> = 0.96). The results showed that sex and breed did not influence the linear regression of EBW as a function of FBW and HCW. However, the present study showed that models predicting EBW from FBW and HCW depended on physiological state.</div></div>\",\"PeriodicalId\":21758,\"journal\":{\"name\":\"Small Ruminant Research\",\"volume\":\"250 \",\"pages\":\"Article 107551\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Ruminant Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921448825001245\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Ruminant Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921448825001245","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用不同生理状态下毛羊的空腹体重(FBW)和热胴体体重(HCW)建立预测空体体重(EBW)的方程。为了建立预测模型,数据集由278只羊的个体测量数据组成,其中包括哺乳公羊(21只Pelibuey和15只Katahdin)、母羊(8只Pelibuey和12只Katahdin)、生长公羊(55只Black Belly和43只Katahdin)和母羊(56只Black Belly、13只Dorper、24只Katahdin和21只Katahdin × Pelibuey杂交羊)。EBW对FBW、EBW对HCW的线性回归系数在不同性别和品种间无显著差异(P >; 0.05)。然而,它们受到生理阶段的影响(P <; 0.001)。在哺乳期和生长期建立了4个方程:EBWsuckling = -0.15(±0.04)+ 0.91(±0.02)× FBW(均方根误差(RMSE) = 0.96,R2 = 0.99); EBWgrowing = -1.50(±0.44)+ 0.91(±0.02)× FBW (RMSE = 0.96, R2 = 0.99); EBWsuckling = 1.84(±0.69)+ 1.46(±0.06)× HCW (RMSE = 1.94, R2 = 0.96); EBWgrowing = 5.93(±0.72)+ 1.46(±0.06)× HCW (RMSE = 1.94, R2 = 0.96)。结果表明,性别和品种对猪体重与体重和体重的线性回归关系无显著影响。然而,目前的研究表明,从FBW和HCW预测EBW的模型依赖于生理状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of carcass weight for predicting empty body weight in hair sheep in different physiological states
The objective of this study was to develop equations to predict empty body weight (EBW) by using fasting body weight (FBW) and hot carcass weight (HCW) for hair sheep in different physiological states. To generate the prediction models, a data set was composed of individual measurements from 278 sheep encompassing suckling males (21 Pelibuey and 15 Katahdin) and females (8 Pelibuey and 12 Katahdin) and growing males (55 Black Belly and 43 Katahdin) and females (56 Black Belly, 13 Dorper, 24 Katahdin, and 21 crossbreed Katahdin × Pelibuey). The coefficients obtained from the linear regression of EBW against FBW and EBW against HCW did not differ between sexes and among breeds (P > 0.05). However, they were influenced by physiological stage (P < 0.001). Four equations were generated for suckling and growing stages: EBWsuckling = -0.15(± 0.04) + 0.91(± 0.02) × FBW (root mean square error (RMSE) = 0.96, R2 = 0.99); EBWgrowing = -1.50(± 0.44) + 0.91(± 0.02) × FBW (RMSE = 0.96, R2 = 0.99); EBWsuckling = 1.84(± 0.69) + 1.46(± 0.06) × HCW (RMSE = 1.94, R2 = 0.96); EBWgrowing = 5.93(± 0.72) + 1.46(± 0.06) × HCW (RMSE = 1.94, R2 = 0.96). The results showed that sex and breed did not influence the linear regression of EBW as a function of FBW and HCW. However, the present study showed that models predicting EBW from FBW and HCW depended on physiological state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Ruminant Research
Small Ruminant Research 农林科学-奶制品与动物科学
CiteScore
3.10
自引率
11.10%
发文量
210
审稿时长
12.5 weeks
期刊介绍: Small Ruminant Research publishes original, basic and applied research articles, technical notes, and review articles on research relating to goats, sheep, deer, the New World camelids llama, alpaca, vicuna and guanaco, and the Old World camels. Topics covered include nutrition, physiology, anatomy, genetics, microbiology, ethology, product technology, socio-economics, management, sustainability and environment, veterinary medicine and husbandry engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信