用于缩放金刚石量子寄存器的高保真电子自旋门

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
T. Joas, F. Ferlemann, R. Sailer, P. J. Vetter, J. Zhang, R. S. Said, T. Teraji, S. Onoda, T. Calarco, G. Genov, M. M. Müller, F. Jelezko
{"title":"用于缩放金刚石量子寄存器的高保真电子自旋门","authors":"T. Joas, F. Ferlemann, R. Sailer, P. J. Vetter, J. Zhang, R. S. Said, T. Teraji, S. Onoda, T. Calarco, G. Genov, M. M. Müller, F. Jelezko","doi":"10.1103/physrevx.15.021069","DOIUrl":null,"url":null,"abstract":"Diamond is a promising platform for quantum information processing as it can host highly coherent qubits that could allow for the construction of large quantum registers. A prerequisite for such devices is a coherent interaction between nitrogen-vacancy (NV) electron spins enabling scalable entanglement. Entanglement between dipolar-coupled NV spin pairs has been demonstrated but with a limited fidelity, and its error sources have not been characterized. Here, we design and implement a robust two-qubit gate between NV electron spins in diamond and quantify the influence of multiple error sources on the gate performance. Experimentally, we demonstrate a record gate fidelity of F</a:mi></a:mrow>2</a:mn>q</a:mi></a:mrow></a:msub>=</a:mo>(</a:mo>96.0</a:mn>±</a:mo>2.5</a:mn>)</a:mo>%</a:mi></a:mrow></a:math> under ambient conditions. Our identification of the dominant errors paves the way towards NV-NV gates beyond the error correction threshold. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"19 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Fidelity Electron Spin Gates for Scaling Diamond Quantum Registers\",\"authors\":\"T. Joas, F. Ferlemann, R. Sailer, P. J. Vetter, J. Zhang, R. S. Said, T. Teraji, S. Onoda, T. Calarco, G. Genov, M. M. Müller, F. Jelezko\",\"doi\":\"10.1103/physrevx.15.021069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diamond is a promising platform for quantum information processing as it can host highly coherent qubits that could allow for the construction of large quantum registers. A prerequisite for such devices is a coherent interaction between nitrogen-vacancy (NV) electron spins enabling scalable entanglement. Entanglement between dipolar-coupled NV spin pairs has been demonstrated but with a limited fidelity, and its error sources have not been characterized. Here, we design and implement a robust two-qubit gate between NV electron spins in diamond and quantify the influence of multiple error sources on the gate performance. Experimentally, we demonstrate a record gate fidelity of F</a:mi></a:mrow>2</a:mn>q</a:mi></a:mrow></a:msub>=</a:mo>(</a:mo>96.0</a:mn>±</a:mo>2.5</a:mn>)</a:mo>%</a:mi></a:mrow></a:math> under ambient conditions. Our identification of the dominant errors paves the way towards NV-NV gates beyond the error correction threshold. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021069\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021069","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Diamond是一个很有前途的量子信息处理平台,因为它可以承载高度相干的量子比特,从而可以构建大型量子寄存器。这种装置的先决条件是氮空位(NV)电子自旋之间的相干相互作用,从而实现可扩展的纠缠。偶极耦合NV自旋对之间的纠缠已被证实,但保真度有限,其误差来源尚未表征。在这里,我们设计并实现了金刚石中NV电子自旋之间的鲁棒双量子比特栅极,并量化了多个误差源对栅极性能的影响。实验证明,在环境条件下,记录门保真度为F2q=(96.0±2.5)%。我们对主要误差的识别为超越误差校正阈值的NV-NV门铺平了道路。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Fidelity Electron Spin Gates for Scaling Diamond Quantum Registers
Diamond is a promising platform for quantum information processing as it can host highly coherent qubits that could allow for the construction of large quantum registers. A prerequisite for such devices is a coherent interaction between nitrogen-vacancy (NV) electron spins enabling scalable entanglement. Entanglement between dipolar-coupled NV spin pairs has been demonstrated but with a limited fidelity, and its error sources have not been characterized. Here, we design and implement a robust two-qubit gate between NV electron spins in diamond and quantify the influence of multiple error sources on the gate performance. Experimentally, we demonstrate a record gate fidelity of F2q=(96.0±2.5)% under ambient conditions. Our identification of the dominant errors paves the way towards NV-NV gates beyond the error correction threshold. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信