扭曲六方氮化硼同质结构中的激子自俘获

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Sébastien Roux, Christophe Arnold, Etienne Carré, Alexandre Plaud, Lei Ren, Frédéric Fossard, Nicolas Horezan, Eli Janzen, James H. Edgar, Camille Maestre, Bérangère Toury, Catherine Journet, Vincent Garnier, Philippe Steyer, Takashi Taniguchi, Kenji Watanabe, Cédric Robert, Xavier Marie, François Ducastelle, Annick Loiseau, Julien Barjon
{"title":"扭曲六方氮化硼同质结构中的激子自俘获","authors":"Sébastien Roux, Christophe Arnold, Etienne Carré, Alexandre Plaud, Lei Ren, Frédéric Fossard, Nicolas Horezan, Eli Janzen, James H. Edgar, Camille Maestre, Bérangère Toury, Catherine Journet, Vincent Garnier, Philippe Steyer, Takashi Taniguchi, Kenji Watanabe, Cédric Robert, Xavier Marie, François Ducastelle, Annick Loiseau, Julien Barjon","doi":"10.1103/physrevx.15.021067","DOIUrl":null,"url":null,"abstract":"One of the main interests of 2D materials is their ability to be assembled with many degrees of freedom for tuning and manipulating excitonic properties. There is a need to understand how the structure of the interfaces between atomic layers influences exciton properties. Here we use cathodoluminescence and time-resolved cathodoluminescence experiments to study how excitons interact with the interface between two twisted hexagonal boron nitride (h</a:mi></a:mrow></a:math>-BN) crystals with various angles. An efficient capture of free excitons by the interface is demonstrated, which leads to a population of long-lived and interface-localized (2D) excitons. Temperature-dependent experiments indicate that for high twist angles, these excitons localized at the interface further undergo a self-trapping. It consists in a distortion of the lattice around the exciton on which the exciton traps itself. Our results suggest that this exciton-interface interaction causes the broad 4-eV optical emission of highly twisted <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>h</c:mi></c:mrow></c:math>-BN–<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mi>h</e:mi></e:mrow></e:math>-BN structures. Exciton self-trapping is finally discussed as a common feature of <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>s</g:mi><g:msup><g:mi>p</g:mi><g:mn>2</g:mn></g:msup></g:math> hybridized boron nitride polytypes and nanostructures due to the ionic nature of the B—N bond and the small size of their excitons. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"33 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exciton Self-Trapping in Twisted Hexagonal Boron Nitride homostructures\",\"authors\":\"Sébastien Roux, Christophe Arnold, Etienne Carré, Alexandre Plaud, Lei Ren, Frédéric Fossard, Nicolas Horezan, Eli Janzen, James H. Edgar, Camille Maestre, Bérangère Toury, Catherine Journet, Vincent Garnier, Philippe Steyer, Takashi Taniguchi, Kenji Watanabe, Cédric Robert, Xavier Marie, François Ducastelle, Annick Loiseau, Julien Barjon\",\"doi\":\"10.1103/physrevx.15.021067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main interests of 2D materials is their ability to be assembled with many degrees of freedom for tuning and manipulating excitonic properties. There is a need to understand how the structure of the interfaces between atomic layers influences exciton properties. Here we use cathodoluminescence and time-resolved cathodoluminescence experiments to study how excitons interact with the interface between two twisted hexagonal boron nitride (h</a:mi></a:mrow></a:math>-BN) crystals with various angles. An efficient capture of free excitons by the interface is demonstrated, which leads to a population of long-lived and interface-localized (2D) excitons. Temperature-dependent experiments indicate that for high twist angles, these excitons localized at the interface further undergo a self-trapping. It consists in a distortion of the lattice around the exciton on which the exciton traps itself. Our results suggest that this exciton-interface interaction causes the broad 4-eV optical emission of highly twisted <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mrow><c:mi>h</c:mi></c:mrow></c:math>-BN–<e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:mi>h</e:mi></e:mrow></e:math>-BN structures. Exciton self-trapping is finally discussed as a common feature of <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>s</g:mi><g:msup><g:mi>p</g:mi><g:mn>2</g:mn></g:msup></g:math> hybridized boron nitride polytypes and nanostructures due to the ionic nature of the B—N bond and the small size of their excitons. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021067\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021067","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维材料的主要兴趣之一是它们能够以许多自由度组装以调整和操纵激子特性。有必要了解原子层之间的界面结构如何影响激子的性质。本文采用阴极发光和时间分辨阴极发光实验,研究了激子与两种不同角度的扭曲六方氮化硼(h-BN)晶体之间的界面相互作用。通过界面有效捕获自由激子,从而导致长寿命和界面局域化(2D)激子的种群。温度相关实验表明,当扭转角较大时,这些激子在界面处进一步发生自俘获。它存在于激子周围晶格的扭曲中,激子被困在晶格上。我们的研究结果表明,这种激子-界面相互作用导致了高扭曲h-BN-h-BN结构的宽4-eV光学发射。激子自俘获是sp2杂化氮化硼多型和纳米结构的共同特征,这是由于B-N键的离子性质和激子的小尺寸。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exciton Self-Trapping in Twisted Hexagonal Boron Nitride homostructures
One of the main interests of 2D materials is their ability to be assembled with many degrees of freedom for tuning and manipulating excitonic properties. There is a need to understand how the structure of the interfaces between atomic layers influences exciton properties. Here we use cathodoluminescence and time-resolved cathodoluminescence experiments to study how excitons interact with the interface between two twisted hexagonal boron nitride (h-BN) crystals with various angles. An efficient capture of free excitons by the interface is demonstrated, which leads to a population of long-lived and interface-localized (2D) excitons. Temperature-dependent experiments indicate that for high twist angles, these excitons localized at the interface further undergo a self-trapping. It consists in a distortion of the lattice around the exciton on which the exciton traps itself. Our results suggest that this exciton-interface interaction causes the broad 4-eV optical emission of highly twisted h-BN–h-BN structures. Exciton self-trapping is finally discussed as a common feature of sp2 hybridized boron nitride polytypes and nanostructures due to the ionic nature of the B—N bond and the small size of their excitons. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信