梯度Dirichlet边界条件下Miura曲面的计算

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Frédéric Marazzato
{"title":"梯度Dirichlet边界条件下Miura曲面的计算","authors":"Frédéric Marazzato","doi":"10.1093/imanum/draf033","DOIUrl":null,"url":null,"abstract":"Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry gave suboptimal conditions for existence of solutions and proposed an $H^{2}$-conformal finite element method to approximate them. In this paper the existence of Miura surfaces is studied using a gradient formulation. It is also proved that, under some hypotheses, the constraints propagate from the boundary to the interior of the domain. Then, a numerical method based on a stabilized least-square formulation, conforming finite elements and a Newton method, is introduced to approximate Miura surfaces. The numerical method is proved to converge and numerical tests are performed to demonstrate its robustness.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"43 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of Miura surfaces with gradient Dirichlet boundary conditions\",\"authors\":\"Frédéric Marazzato\",\"doi\":\"10.1093/imanum/draf033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry gave suboptimal conditions for existence of solutions and proposed an $H^{2}$-conformal finite element method to approximate them. In this paper the existence of Miura surfaces is studied using a gradient formulation. It is also proved that, under some hypotheses, the constraints propagate from the boundary to the interior of the domain. Then, a numerical method based on a stabilized least-square formulation, conforming finite elements and a Newton method, is introduced to approximate Miura surfaces. The numerical method is proved to converge and numerical tests are performed to demonstrate its robustness.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf033\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf033","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Miura曲面是一类约束非线性椭圆方程组的解。该系统是由具有多种工程应用的折纸褶皱三浦褶皱均质化而来的。先前的研究给出了解存在的次优条件,并提出了一种$H^{2}$-共形有限元法来逼近它们。本文利用梯度公式研究了Miura曲面的存在性。还证明了在某些假设条件下,约束从边界向内部传播。在此基础上,提出了一种基于稳定最小二乘公式、拟合有限元和牛顿法的三浦曲面近似方法。通过数值实验证明了该方法的收敛性,并验证了该方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of Miura surfaces with gradient Dirichlet boundary conditions
Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry gave suboptimal conditions for existence of solutions and proposed an $H^{2}$-conformal finite element method to approximate them. In this paper the existence of Miura surfaces is studied using a gradient formulation. It is also proved that, under some hypotheses, the constraints propagate from the boundary to the interior of the domain. Then, a numerical method based on a stabilized least-square formulation, conforming finite elements and a Newton method, is introduced to approximate Miura surfaces. The numerical method is proved to converge and numerical tests are performed to demonstrate its robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信