基于时间滑动锚点方法的HIV多药耐药预测。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-05-15 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf099
Nurhan Arslan, Ralf Eggeling, Bernhard Reuter, Kristel Van Leathem, Marta Pingarilho, Perpétua Gomes, Anders Sönnerborg, Rolf Kaiser, Maurizio Zazzi, Nico Pfeifer
{"title":"基于时间滑动锚点方法的HIV多药耐药预测。","authors":"Nurhan Arslan, Ralf Eggeling, Bernhard Reuter, Kristel Van Leathem, Marta Pingarilho, Perpétua Gomes, Anders Sönnerborg, Rolf Kaiser, Maurizio Zazzi, Nico Pfeifer","doi":"10.1093/bioadv/vbaf099","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The emergence of multidrug class resistance (MDR) in Human Immunodeficiency Virus (HIV) is a rare but significant challenge in antiretroviral therapy (ART). MDR, which may arise from prolonged drug exposure, treatment failures, or transmission of resistant strains, accelerates disease progression and poses particular challenges in resource-limited settings with restricted access to resistance testing and advanced therapies. Early prediction of future MDR development is important to inform therapeutic decisions and mitigate its occurrence.</p><p><strong>Results: </strong>In this study, we employ various machine learning classifiers to predict future resistance to all four major antiretroviral drug classes using features extracted from clinical HIV sequence data. We systematically explore several variations of the problem that differ in the pre-existing resistance level and the temporal gap between sample collection and observed MDR occurrence. Our models show the ability to predict multidrug class resistance even in the most challenging variations, albeit at a reduced accuracy. Feature importance analysis reveals that our models primarily utilize known drug resistance mutations for easier classification tasks, but rely on new mutations for the difficult task of distinguishing four class drug resistance from three class drug resistance.</p><p><strong>Availability and implementation: </strong>All analysis was performed using the Euresist Integrated DataBase (EIDB). Researchers wishing to reproduce, validate or extend these findings can request access to the latest EIDB release via the Euresist Network.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf099"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104520/pdf/","citationCount":"0","resultStr":"{\"title\":\"HIV multidrug class resistance prediction with a time sliding anchor approach.\",\"authors\":\"Nurhan Arslan, Ralf Eggeling, Bernhard Reuter, Kristel Van Leathem, Marta Pingarilho, Perpétua Gomes, Anders Sönnerborg, Rolf Kaiser, Maurizio Zazzi, Nico Pfeifer\",\"doi\":\"10.1093/bioadv/vbaf099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The emergence of multidrug class resistance (MDR) in Human Immunodeficiency Virus (HIV) is a rare but significant challenge in antiretroviral therapy (ART). MDR, which may arise from prolonged drug exposure, treatment failures, or transmission of resistant strains, accelerates disease progression and poses particular challenges in resource-limited settings with restricted access to resistance testing and advanced therapies. Early prediction of future MDR development is important to inform therapeutic decisions and mitigate its occurrence.</p><p><strong>Results: </strong>In this study, we employ various machine learning classifiers to predict future resistance to all four major antiretroviral drug classes using features extracted from clinical HIV sequence data. We systematically explore several variations of the problem that differ in the pre-existing resistance level and the temporal gap between sample collection and observed MDR occurrence. Our models show the ability to predict multidrug class resistance even in the most challenging variations, albeit at a reduced accuracy. Feature importance analysis reveals that our models primarily utilize known drug resistance mutations for easier classification tasks, but rely on new mutations for the difficult task of distinguishing four class drug resistance from three class drug resistance.</p><p><strong>Availability and implementation: </strong>All analysis was performed using the Euresist Integrated DataBase (EIDB). Researchers wishing to reproduce, validate or extend these findings can request access to the latest EIDB release via the Euresist Network.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf099\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104520/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:人类免疫缺陷病毒(HIV)多药耐药(MDR)的出现是抗逆转录病毒治疗(ART)的一个罕见但重大的挑战。耐多药耐多药可能由长期药物暴露、治疗失败或耐药菌株传播引起,可加速疾病进展,并在资源有限、获得耐药检测和先进疗法受限的环境中构成特别挑战。早期预测未来的耐多药发展对告知治疗决策和减轻其发生非常重要。结果:在这项研究中,我们利用从临床HIV序列数据中提取的特征,使用各种机器学习分类器来预测未来对所有四种主要抗逆转录病毒药物类别的耐药性。我们系统地探讨了问题的几种变化,这些变化在预先存在的抗性水平和样本收集与观察到的MDR发生之间的时间差距方面有所不同。我们的模型显示,即使在最具挑战性的变化中,也有能力预测多药耐药,尽管准确性较低。特征重要性分析表明,我们的模型主要利用已知的耐药突变来完成更容易的分类任务,而依赖于新突变来完成区分四类耐药和三类耐药的困难任务。可用性和实施:所有分析均使用Euresist集成数据库(EIDB)进行。希望复制、验证或扩展这些发现的研究人员可以通过Euresist Network请求访问最新的EIDB版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HIV multidrug class resistance prediction with a time sliding anchor approach.

Motivation: The emergence of multidrug class resistance (MDR) in Human Immunodeficiency Virus (HIV) is a rare but significant challenge in antiretroviral therapy (ART). MDR, which may arise from prolonged drug exposure, treatment failures, or transmission of resistant strains, accelerates disease progression and poses particular challenges in resource-limited settings with restricted access to resistance testing and advanced therapies. Early prediction of future MDR development is important to inform therapeutic decisions and mitigate its occurrence.

Results: In this study, we employ various machine learning classifiers to predict future resistance to all four major antiretroviral drug classes using features extracted from clinical HIV sequence data. We systematically explore several variations of the problem that differ in the pre-existing resistance level and the temporal gap between sample collection and observed MDR occurrence. Our models show the ability to predict multidrug class resistance even in the most challenging variations, albeit at a reduced accuracy. Feature importance analysis reveals that our models primarily utilize known drug resistance mutations for easier classification tasks, but rely on new mutations for the difficult task of distinguishing four class drug resistance from three class drug resistance.

Availability and implementation: All analysis was performed using the Euresist Integrated DataBase (EIDB). Researchers wishing to reproduce, validate or extend these findings can request access to the latest EIDB release via the Euresist Network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信