基于模糊推理的非刚体多模态配准视网膜图像配准。

IF 1.1 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2025-05-01 eCollection Date: 2025-01-01 DOI:10.4103/jmss.jmss_42_24
Monire Sheikh Hosseini, Hossein Rabbani
{"title":"基于模糊推理的非刚体多模态配准视网膜图像配准。","authors":"Monire Sheikh Hosseini, Hossein Rabbani","doi":"10.4103/jmss.jmss_42_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Retinal imaging employs various modalities, each providing distinct perspectives on ocular structures. However, the integration of information from these modalities, which often have differing resolutions, requires effective image registration techniques. Existing retinal image registration methods typically rely on rigid or affine transformations, which may not adequately address the complexities of multimodal retinal images.</p><p><strong>Method: </strong>This study introduces a nonrigid fuzzy image registration approach designed to align optical coherence tomography (OCT) images with fundus images. The method employs a fuzzy inference system (FIS) that uses vessel locations as key features for registration. The FIS applies specific rules to map points from the source image to the reference image, facilitating accurate alignment.</p><p><strong>Results: </strong>The proposed method achieved a mean absolute registration error of 44.57 ± 39.38 µm in the superior-inferior orientation and 11.46 ± 10.06 µm in the nasal-temporal orientation. These results underscore the method's precision in aligning multimodal retinal images.</p><p><strong>Conclusion: </strong>The nonrigid fuzzy image registration approach demonstrates robust and versatile performance in integrating multimodal retinal imaging data. Despite its straightforward implementation, the method effectively addresses the challenges of multimodal retinal image registration, providing a reliable tool for advanced ocular imaging analysis.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"15 ","pages":"13"},"PeriodicalIF":1.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105805/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonrigid Multimodal Registration Based on Fuzzy Inference System for Retinal Image Registration.\",\"authors\":\"Monire Sheikh Hosseini, Hossein Rabbani\",\"doi\":\"10.4103/jmss.jmss_42_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Retinal imaging employs various modalities, each providing distinct perspectives on ocular structures. However, the integration of information from these modalities, which often have differing resolutions, requires effective image registration techniques. Existing retinal image registration methods typically rely on rigid or affine transformations, which may not adequately address the complexities of multimodal retinal images.</p><p><strong>Method: </strong>This study introduces a nonrigid fuzzy image registration approach designed to align optical coherence tomography (OCT) images with fundus images. The method employs a fuzzy inference system (FIS) that uses vessel locations as key features for registration. The FIS applies specific rules to map points from the source image to the reference image, facilitating accurate alignment.</p><p><strong>Results: </strong>The proposed method achieved a mean absolute registration error of 44.57 ± 39.38 µm in the superior-inferior orientation and 11.46 ± 10.06 µm in the nasal-temporal orientation. These results underscore the method's precision in aligning multimodal retinal images.</p><p><strong>Conclusion: </strong>The nonrigid fuzzy image registration approach demonstrates robust and versatile performance in integrating multimodal retinal imaging data. Despite its straightforward implementation, the method effectively addresses the challenges of multimodal retinal image registration, providing a reliable tool for advanced ocular imaging analysis.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"15 \",\"pages\":\"13\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105805/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_42_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_42_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:视网膜成像采用多种模式,每种模式都提供不同的视角来观察眼部结构。然而,从这些模式的信息集成,往往有不同的分辨率,需要有效的图像配准技术。现有的视网膜图像配准方法通常依赖于刚性或仿射变换,这可能无法充分解决多模态视网膜图像的复杂性。方法:本研究引入一种非刚性模糊图像配准方法,用于光学相干断层扫描(OCT)图像与眼底图像对齐。该方法采用模糊推理系统(FIS),将船舶位置作为注册的关键特征。FIS应用特定规则将点从源图像映射到参考图像,从而促进精确对齐。结果:该方法在上下位的平均绝对配准误差为44.57±39.38µm,在鼻颞位的平均绝对配准误差为11.46±10.06µm。这些结果强调了该方法在多模态视网膜图像对准中的精度。结论:非刚性模糊图像配准方法在整合多模态视网膜成像数据方面具有鲁棒性和通用性。尽管该方法实现简单,但它有效地解决了多模态视网膜图像配准的挑战,为高级眼成像分析提供了可靠的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonrigid Multimodal Registration Based on Fuzzy Inference System for Retinal Image Registration.

Background: Retinal imaging employs various modalities, each providing distinct perspectives on ocular structures. However, the integration of information from these modalities, which often have differing resolutions, requires effective image registration techniques. Existing retinal image registration methods typically rely on rigid or affine transformations, which may not adequately address the complexities of multimodal retinal images.

Method: This study introduces a nonrigid fuzzy image registration approach designed to align optical coherence tomography (OCT) images with fundus images. The method employs a fuzzy inference system (FIS) that uses vessel locations as key features for registration. The FIS applies specific rules to map points from the source image to the reference image, facilitating accurate alignment.

Results: The proposed method achieved a mean absolute registration error of 44.57 ± 39.38 µm in the superior-inferior orientation and 11.46 ± 10.06 µm in the nasal-temporal orientation. These results underscore the method's precision in aligning multimodal retinal images.

Conclusion: The nonrigid fuzzy image registration approach demonstrates robust and versatile performance in integrating multimodal retinal imaging data. Despite its straightforward implementation, the method effectively addresses the challenges of multimodal retinal image registration, providing a reliable tool for advanced ocular imaging analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信