Xueqing Yin, Craig Anderson, Duncan Lee, Gary Napier
{"title":"贝叶斯疾病制图中的风险估计与边界检测。","authors":"Xueqing Yin, Craig Anderson, Duncan Lee, Gary Napier","doi":"10.1515/ijb-2023-0138","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk estimation and boundary detection in Bayesian disease mapping.\",\"authors\":\"Xueqing Yin, Craig Anderson, Duncan Lee, Gary Napier\",\"doi\":\"10.1515/ijb-2023-0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland.</p>\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2023-0138\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0138","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Risk estimation and boundary detection in Bayesian disease mapping.
Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.