Jiahong Wu, Ruiling He, Zeyu Xu, Huan Yang, Yupeng Guan, Lu Sun, Wantong Lv, Jiayu Huang, Jiancheng Wang
{"title":"机械信号介导的线粒体-内质网接触调节睾丸发育过程中间质细胞的睾酮生物合成。","authors":"Jiahong Wu, Ruiling He, Zeyu Xu, Huan Yang, Yupeng Guan, Lu Sun, Wantong Lv, Jiayu Huang, Jiancheng Wang","doi":"10.1093/molehr/gaaf017","DOIUrl":null,"url":null,"abstract":"<p><p>In males, 95% of testosterone is synthesized by Leydig cells, and a deficiency in this synthesis will cause metabolic disorders and multiple organ dysfunction. Testosterone deficiency is not only affected by aged or diseased Leydig cells, which have been studied extensively, but is also closely related to the development of the testis. At present, the focus on the mechanism of testis development includes epigenetic and hormone regulation. However, testicular development is constrained by the external tough tunica albuginea, suggesting that mechanical signals may also play an important role in the regulation of testis development; however, this is not yet well understood. In this in-vitro study, we found that a gradual increase in extracellular substrate stiffness for testis development leads to the activation of mechanical signals to promote cytoskeleton remodeling. Eventually, the mechanical signal mediate changes in the mitochondrial-endoplasmic reticulum and affect the synthesis of testosterone in Leydig cells. Through organoid and animal experiments, we found that targeting mechanical signaling pathways that regulate testosterone biosynthesis is feasible. This provides a new angle for further exploration of testis development and new insights into how substrate stiffness affects the testis, raising new clues for clinical applications.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical signal-mediated mitochondria-endoplasmic reticulum contacts modulate Leydig cell testosterone biosynthesis during testis development.\",\"authors\":\"Jiahong Wu, Ruiling He, Zeyu Xu, Huan Yang, Yupeng Guan, Lu Sun, Wantong Lv, Jiayu Huang, Jiancheng Wang\",\"doi\":\"10.1093/molehr/gaaf017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In males, 95% of testosterone is synthesized by Leydig cells, and a deficiency in this synthesis will cause metabolic disorders and multiple organ dysfunction. Testosterone deficiency is not only affected by aged or diseased Leydig cells, which have been studied extensively, but is also closely related to the development of the testis. At present, the focus on the mechanism of testis development includes epigenetic and hormone regulation. However, testicular development is constrained by the external tough tunica albuginea, suggesting that mechanical signals may also play an important role in the regulation of testis development; however, this is not yet well understood. In this in-vitro study, we found that a gradual increase in extracellular substrate stiffness for testis development leads to the activation of mechanical signals to promote cytoskeleton remodeling. Eventually, the mechanical signal mediate changes in the mitochondrial-endoplasmic reticulum and affect the synthesis of testosterone in Leydig cells. Through organoid and animal experiments, we found that targeting mechanical signaling pathways that regulate testosterone biosynthesis is feasible. This provides a new angle for further exploration of testis development and new insights into how substrate stiffness affects the testis, raising new clues for clinical applications.</p>\",\"PeriodicalId\":18759,\"journal\":{\"name\":\"Molecular human reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular human reproduction\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/molehr/gaaf017\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/molehr/gaaf017","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
In males, 95% of testosterone is synthesized by Leydig cells, and a deficiency in this synthesis will cause metabolic disorders and multiple organ dysfunction. Testosterone deficiency is not only affected by aged or diseased Leydig cells, which have been studied extensively, but is also closely related to the development of the testis. At present, the focus on the mechanism of testis development includes epigenetic and hormone regulation. However, testicular development is constrained by the external tough tunica albuginea, suggesting that mechanical signals may also play an important role in the regulation of testis development; however, this is not yet well understood. In this in-vitro study, we found that a gradual increase in extracellular substrate stiffness for testis development leads to the activation of mechanical signals to promote cytoskeleton remodeling. Eventually, the mechanical signal mediate changes in the mitochondrial-endoplasmic reticulum and affect the synthesis of testosterone in Leydig cells. Through organoid and animal experiments, we found that targeting mechanical signaling pathways that regulate testosterone biosynthesis is feasible. This provides a new angle for further exploration of testis development and new insights into how substrate stiffness affects the testis, raising new clues for clinical applications.
期刊介绍:
MHR publishes original research reports, commentaries and reviews on topics in the basic science of reproduction, including: reproductive tract physiology and pathology; gonad function and gametogenesis; fertilization; embryo development; implantation; and pregnancy and parturition. Irrespective of the study subject, research papers should have a mechanistic aspect.