Hong Wei, Dongni Xia, Li Li, Linpan Liang, Lijun Ning, Cuiliu Gan, Ying Wu
{"title":"黄芩苷通过PKC/Raf/MEK/ERK和PI3K/AKT信号通路调节糖酵解,减轻ifn - i诱导的中性粒细胞NETosis。","authors":"Hong Wei, Dongni Xia, Li Li, Linpan Liang, Lijun Ning, Cuiliu Gan, Ying Wu","doi":"10.1155/mi/8822728","DOIUrl":null,"url":null,"abstract":"<p><p>Type I interferon (IFN-I), a pivotal component of the host's innate antiviral immune system, can induce the formation of neutrophil extracellular traps (NETs) and facilitate inflammatory responses. Baicalin exhibits a range of pharmacological activities, including anti-inflammatory and immunomodulatory effects. It has been reported that neutrophil glycolysis plays a pivotal role in the formation of NETs and the regulation of inflammatory response in immune modulation, regulated by IFN-I. However, it remains unclear whether baicalin regulates IFN-I-induced NETs formation through glycolysis. In this study, we induced the formation of NETs <i>in vitro</i> using IFN-I and observed that baicalin significantly reduced the formation of IFN-I-induced NETs. Furthermore, baicalin inhibited the production of pro-inflammatory cytokines, specifically interleukin-1 beta (IL-1<i>β</i>) and interleukin-6 (IL-6), as well as the generation of reactive oxygen species (ROS) and chemotactic responses. Our findings further indicated that baicalin could inhibit both lactic acid and ATP levels in IFN-I-induced neutrophils, as well as the expression of glycolytic-related proteins, including HK2, HK3, PKM2, and LDHA. Moreover, following the administration of glycolytic agonists insulin, it was observed that heightened glycolytic activity significantly augmented NETs formation and the release of inflammatory cytokines, potentially regulated by PKC/Raf/MEK/ERK and PI3K/AKT signaling pathways. In conclusion, our findings indicated that baicalin may exert inhibitory effects on IFN-I-induced NETs formation and inflammatory cytokine production by modulating glycolysis, thereby providing further evidence for the potential clinical application of baicalin in the treatment of IFN-I-related inflammatory diseases.</p>","PeriodicalId":18371,"journal":{"name":"Mediators of Inflammation","volume":"2025 ","pages":"8822728"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105894/pdf/","citationCount":"0","resultStr":"{\"title\":\"Baicalin Modulates Glycolysis <i>via</i> the PKC/Raf/MEK/ERK and PI3K/AKT Signaling Pathways to Attenuate IFN-I-Induced Neutrophil NETosis.\",\"authors\":\"Hong Wei, Dongni Xia, Li Li, Linpan Liang, Lijun Ning, Cuiliu Gan, Ying Wu\",\"doi\":\"10.1155/mi/8822728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type I interferon (IFN-I), a pivotal component of the host's innate antiviral immune system, can induce the formation of neutrophil extracellular traps (NETs) and facilitate inflammatory responses. Baicalin exhibits a range of pharmacological activities, including anti-inflammatory and immunomodulatory effects. It has been reported that neutrophil glycolysis plays a pivotal role in the formation of NETs and the regulation of inflammatory response in immune modulation, regulated by IFN-I. However, it remains unclear whether baicalin regulates IFN-I-induced NETs formation through glycolysis. In this study, we induced the formation of NETs <i>in vitro</i> using IFN-I and observed that baicalin significantly reduced the formation of IFN-I-induced NETs. Furthermore, baicalin inhibited the production of pro-inflammatory cytokines, specifically interleukin-1 beta (IL-1<i>β</i>) and interleukin-6 (IL-6), as well as the generation of reactive oxygen species (ROS) and chemotactic responses. Our findings further indicated that baicalin could inhibit both lactic acid and ATP levels in IFN-I-induced neutrophils, as well as the expression of glycolytic-related proteins, including HK2, HK3, PKM2, and LDHA. Moreover, following the administration of glycolytic agonists insulin, it was observed that heightened glycolytic activity significantly augmented NETs formation and the release of inflammatory cytokines, potentially regulated by PKC/Raf/MEK/ERK and PI3K/AKT signaling pathways. In conclusion, our findings indicated that baicalin may exert inhibitory effects on IFN-I-induced NETs formation and inflammatory cytokine production by modulating glycolysis, thereby providing further evidence for the potential clinical application of baicalin in the treatment of IFN-I-related inflammatory diseases.</p>\",\"PeriodicalId\":18371,\"journal\":{\"name\":\"Mediators of Inflammation\",\"volume\":\"2025 \",\"pages\":\"8822728\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105894/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mediators of Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/mi/8822728\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediators of Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/mi/8822728","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Baicalin Modulates Glycolysis via the PKC/Raf/MEK/ERK and PI3K/AKT Signaling Pathways to Attenuate IFN-I-Induced Neutrophil NETosis.
Type I interferon (IFN-I), a pivotal component of the host's innate antiviral immune system, can induce the formation of neutrophil extracellular traps (NETs) and facilitate inflammatory responses. Baicalin exhibits a range of pharmacological activities, including anti-inflammatory and immunomodulatory effects. It has been reported that neutrophil glycolysis plays a pivotal role in the formation of NETs and the regulation of inflammatory response in immune modulation, regulated by IFN-I. However, it remains unclear whether baicalin regulates IFN-I-induced NETs formation through glycolysis. In this study, we induced the formation of NETs in vitro using IFN-I and observed that baicalin significantly reduced the formation of IFN-I-induced NETs. Furthermore, baicalin inhibited the production of pro-inflammatory cytokines, specifically interleukin-1 beta (IL-1β) and interleukin-6 (IL-6), as well as the generation of reactive oxygen species (ROS) and chemotactic responses. Our findings further indicated that baicalin could inhibit both lactic acid and ATP levels in IFN-I-induced neutrophils, as well as the expression of glycolytic-related proteins, including HK2, HK3, PKM2, and LDHA. Moreover, following the administration of glycolytic agonists insulin, it was observed that heightened glycolytic activity significantly augmented NETs formation and the release of inflammatory cytokines, potentially regulated by PKC/Raf/MEK/ERK and PI3K/AKT signaling pathways. In conclusion, our findings indicated that baicalin may exert inhibitory effects on IFN-I-induced NETs formation and inflammatory cytokine production by modulating glycolysis, thereby providing further evidence for the potential clinical application of baicalin in the treatment of IFN-I-related inflammatory diseases.
期刊介绍:
Mediators of Inflammation is a peer-reviewed, Open Access journal that publishes original research and review articles on all types of inflammatory mediators, including cytokines, histamine, bradykinin, prostaglandins, leukotrienes, PAF, biological response modifiers and the family of cell adhesion-promoting molecules.