Alizé Proust, Katalin A Wilkinson, Robert J Wilkinson
{"title":"结核分枝杆菌和HIV-1感染对体外血脑屏障功能的影响。","authors":"Alizé Proust, Katalin A Wilkinson, Robert J Wilkinson","doi":"10.1186/s12974-025-03467-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tuberculous meningitis is the most severe form of tuberculosis and HIV-1 co-infection worsens the already poor prognosis. However, how Mycobacterium tuberculosis crosses the blood-brain barrier and how HIV-1 influences tuberculous meningitis pathogenesis remains unclear.</p><p><strong>Methods: </strong>Using human pericytes, astrocytes, endothelial cells, and microglia alone and combined in an in vitro blood-brain barrier model, we investigated the effect of Mycobacterium tuberculosis +/- HIV-1 co-infection on central nervous system cell entry and function. Cells and the blood-brain barrier model were infected with Mycobacterium tuberculosis and/or HIV-1 and we evaluated the effects of both infection on (i) cells susceptibility to Mycobacterium tuberculosis and its growth in cells by flow cytometry; (ii) modulation of blood-brain barrier permeability and Mycobacterium tuberculosis passage through it; (iii) viral and bacterial cytopathogenicity using the xCELLigence system; (iv) cell metabolic activity and ROS release using colorimetric assays; (v) extracellular glutamate concentration by fluorometric assay; (vi) the inflammatory response by Luminex; and (vii) endoplasmic reticulum stress by quantitative PCR.</p><p><strong>Results: </strong>We demonstrated that Mycobacterium tuberculosis infects and multiplies in all cell types with HIV-1 increasing entry to astrocytes and pericytes, and growth in HIV-1 positive pericytes and endothelial cells. Mycobacterium tuberculosis also induces an increase of the blood-brain barrier permeability resulting in translocation of bacilli across it. Cytopathic effects include (i) increased markers of cellular stress (mitochondrial metabolic activity, unfolded protein response); (ii) ROS release; (iii) the induction of neurotoxic astrocytes; (iv) and the secretion of the excitotoxic neurotransmitter glutamate. Lastly, we observed distinct cell-type specific production of inflammatory and effector mediators.</p><p><strong>Conclusion: </strong>These results indicate that Mycobacterium tuberculosis can translocate the blood-brain barrier directly to initiate meningitis.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"141"},"PeriodicalIF":9.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107840/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of M. tuberculosis and HIV-1 infection on in vitro blood-brain barrier function.\",\"authors\":\"Alizé Proust, Katalin A Wilkinson, Robert J Wilkinson\",\"doi\":\"10.1186/s12974-025-03467-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tuberculous meningitis is the most severe form of tuberculosis and HIV-1 co-infection worsens the already poor prognosis. However, how Mycobacterium tuberculosis crosses the blood-brain barrier and how HIV-1 influences tuberculous meningitis pathogenesis remains unclear.</p><p><strong>Methods: </strong>Using human pericytes, astrocytes, endothelial cells, and microglia alone and combined in an in vitro blood-brain barrier model, we investigated the effect of Mycobacterium tuberculosis +/- HIV-1 co-infection on central nervous system cell entry and function. Cells and the blood-brain barrier model were infected with Mycobacterium tuberculosis and/or HIV-1 and we evaluated the effects of both infection on (i) cells susceptibility to Mycobacterium tuberculosis and its growth in cells by flow cytometry; (ii) modulation of blood-brain barrier permeability and Mycobacterium tuberculosis passage through it; (iii) viral and bacterial cytopathogenicity using the xCELLigence system; (iv) cell metabolic activity and ROS release using colorimetric assays; (v) extracellular glutamate concentration by fluorometric assay; (vi) the inflammatory response by Luminex; and (vii) endoplasmic reticulum stress by quantitative PCR.</p><p><strong>Results: </strong>We demonstrated that Mycobacterium tuberculosis infects and multiplies in all cell types with HIV-1 increasing entry to astrocytes and pericytes, and growth in HIV-1 positive pericytes and endothelial cells. Mycobacterium tuberculosis also induces an increase of the blood-brain barrier permeability resulting in translocation of bacilli across it. Cytopathic effects include (i) increased markers of cellular stress (mitochondrial metabolic activity, unfolded protein response); (ii) ROS release; (iii) the induction of neurotoxic astrocytes; (iv) and the secretion of the excitotoxic neurotransmitter glutamate. Lastly, we observed distinct cell-type specific production of inflammatory and effector mediators.</p><p><strong>Conclusion: </strong>These results indicate that Mycobacterium tuberculosis can translocate the blood-brain barrier directly to initiate meningitis.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"22 1\",\"pages\":\"141\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107840/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-025-03467-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03467-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Effects of M. tuberculosis and HIV-1 infection on in vitro blood-brain barrier function.
Background: Tuberculous meningitis is the most severe form of tuberculosis and HIV-1 co-infection worsens the already poor prognosis. However, how Mycobacterium tuberculosis crosses the blood-brain barrier and how HIV-1 influences tuberculous meningitis pathogenesis remains unclear.
Methods: Using human pericytes, astrocytes, endothelial cells, and microglia alone and combined in an in vitro blood-brain barrier model, we investigated the effect of Mycobacterium tuberculosis +/- HIV-1 co-infection on central nervous system cell entry and function. Cells and the blood-brain barrier model were infected with Mycobacterium tuberculosis and/or HIV-1 and we evaluated the effects of both infection on (i) cells susceptibility to Mycobacterium tuberculosis and its growth in cells by flow cytometry; (ii) modulation of blood-brain barrier permeability and Mycobacterium tuberculosis passage through it; (iii) viral and bacterial cytopathogenicity using the xCELLigence system; (iv) cell metabolic activity and ROS release using colorimetric assays; (v) extracellular glutamate concentration by fluorometric assay; (vi) the inflammatory response by Luminex; and (vii) endoplasmic reticulum stress by quantitative PCR.
Results: We demonstrated that Mycobacterium tuberculosis infects and multiplies in all cell types with HIV-1 increasing entry to astrocytes and pericytes, and growth in HIV-1 positive pericytes and endothelial cells. Mycobacterium tuberculosis also induces an increase of the blood-brain barrier permeability resulting in translocation of bacilli across it. Cytopathic effects include (i) increased markers of cellular stress (mitochondrial metabolic activity, unfolded protein response); (ii) ROS release; (iii) the induction of neurotoxic astrocytes; (iv) and the secretion of the excitotoxic neurotransmitter glutamate. Lastly, we observed distinct cell-type specific production of inflammatory and effector mediators.
Conclusion: These results indicate that Mycobacterium tuberculosis can translocate the blood-brain barrier directly to initiate meningitis.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.