Tomas Matejek, Lukas Prchal, Bara Zapletalova, Veronika Pokorna, Jana Malakova, Vladimir Palicka, Ondrej Soukup
{"title":"早产儿维生素D代谢组:对产后代谢的见解。","authors":"Tomas Matejek, Lukas Prchal, Bara Zapletalova, Veronika Pokorna, Jana Malakova, Vladimir Palicka, Ondrej Soukup","doi":"10.1515/cclm-2025-0311","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To describe the structure of vitamin D metabolome and investigate the possible cause of high serum levels of C3 epimers of 25-(OH)D in preterm infants, we compared the vitamin D metabolites in umbilical cord blood with serum samples taken at 28 days of age.</p><p><strong>Methods: </strong>We analysed 40 preterm infants (29+0-32+6 weeks of gestation). Cholecalciferol, 25-(OH)D, and its C3-epimers were measured using liquid chromatography. A microsomal study with human liver and kidney microsomes was conducted to assess vitamin D metabolism. Identified metabolites were then examined in cord blood and serum samples.</p><p><strong>Results: </strong>Cholecalciferol, 25-(OH)D, and its C3-epimers were significantly lower in cord blood compared to serum at 28 days of age (p<0.001 for all metabolites). Conversely, metabolites from the microsomal study (monohydroxylated-, dihydroxylated-, and mono-oxylated dihydroxylated-cholecalciferol and their C3-epimers) were significantly higher in cord blood (p<0.001 for all).</p><p><strong>Conclusions: </strong>Our findings indicate that cholecalciferol, 25-(OH)D, and its C3-epimers increase during the first month of life, suggesting functional biosynthesis and postnatal accumulation of these metabolites. Conversely, based on microsomal study results, it seems that biotransformation responsible for a degradation of vitamin D during the first month of life in preterm infants is functionally impaired.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitamin D metabolome in preterm infants: insights into postnatal metabolism.\",\"authors\":\"Tomas Matejek, Lukas Prchal, Bara Zapletalova, Veronika Pokorna, Jana Malakova, Vladimir Palicka, Ondrej Soukup\",\"doi\":\"10.1515/cclm-2025-0311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To describe the structure of vitamin D metabolome and investigate the possible cause of high serum levels of C3 epimers of 25-(OH)D in preterm infants, we compared the vitamin D metabolites in umbilical cord blood with serum samples taken at 28 days of age.</p><p><strong>Methods: </strong>We analysed 40 preterm infants (29+0-32+6 weeks of gestation). Cholecalciferol, 25-(OH)D, and its C3-epimers were measured using liquid chromatography. A microsomal study with human liver and kidney microsomes was conducted to assess vitamin D metabolism. Identified metabolites were then examined in cord blood and serum samples.</p><p><strong>Results: </strong>Cholecalciferol, 25-(OH)D, and its C3-epimers were significantly lower in cord blood compared to serum at 28 days of age (p<0.001 for all metabolites). Conversely, metabolites from the microsomal study (monohydroxylated-, dihydroxylated-, and mono-oxylated dihydroxylated-cholecalciferol and their C3-epimers) were significantly higher in cord blood (p<0.001 for all).</p><p><strong>Conclusions: </strong>Our findings indicate that cholecalciferol, 25-(OH)D, and its C3-epimers increase during the first month of life, suggesting functional biosynthesis and postnatal accumulation of these metabolites. Conversely, based on microsomal study results, it seems that biotransformation responsible for a degradation of vitamin D during the first month of life in preterm infants is functionally impaired.</p>\",\"PeriodicalId\":10390,\"journal\":{\"name\":\"Clinical chemistry and laboratory medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry and laboratory medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/cclm-2025-0311\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2025-0311","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Vitamin D metabolome in preterm infants: insights into postnatal metabolism.
Objectives: To describe the structure of vitamin D metabolome and investigate the possible cause of high serum levels of C3 epimers of 25-(OH)D in preterm infants, we compared the vitamin D metabolites in umbilical cord blood with serum samples taken at 28 days of age.
Methods: We analysed 40 preterm infants (29+0-32+6 weeks of gestation). Cholecalciferol, 25-(OH)D, and its C3-epimers were measured using liquid chromatography. A microsomal study with human liver and kidney microsomes was conducted to assess vitamin D metabolism. Identified metabolites were then examined in cord blood and serum samples.
Results: Cholecalciferol, 25-(OH)D, and its C3-epimers were significantly lower in cord blood compared to serum at 28 days of age (p<0.001 for all metabolites). Conversely, metabolites from the microsomal study (monohydroxylated-, dihydroxylated-, and mono-oxylated dihydroxylated-cholecalciferol and their C3-epimers) were significantly higher in cord blood (p<0.001 for all).
Conclusions: Our findings indicate that cholecalciferol, 25-(OH)D, and its C3-epimers increase during the first month of life, suggesting functional biosynthesis and postnatal accumulation of these metabolites. Conversely, based on microsomal study results, it seems that biotransformation responsible for a degradation of vitamin D during the first month of life in preterm infants is functionally impaired.
期刊介绍:
Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically.
CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France).
Topics:
- clinical biochemistry
- clinical genomics and molecular biology
- clinical haematology and coagulation
- clinical immunology and autoimmunity
- clinical microbiology
- drug monitoring and analysis
- evaluation of diagnostic biomarkers
- disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes)
- new reagents, instrumentation and technologies
- new methodologies
- reference materials and methods
- reference values and decision limits
- quality and safety in laboratory medicine
- translational laboratory medicine
- clinical metrology
Follow @cclm_degruyter on Twitter!