Brett R Chrest, McLane M Montgomery, Raphael T Aruleba, Polina Krassovskaia, Emely A Pacheco, James T Hagen, Kayla J Vandiver, Kang Tung, Molly K Alexander, Nicholas C Williamson, Joshua G Taylor, Riley N Bessetti, Heather A Belcher, Filip Jevtovic, Zoe S Terwilliger, Everett C Minchew, Tonya N Zeczycki, Linda May, Nicholas T Broskey, Christopher B Geyer, Karen Litwa, Espen E Spangenburg, Johanna L Hannan, Jessica M Ellis, Joseph M McClung, P Darrell Neufer, Kelsey H Fisher-Wellman
{"title":"生理介质对急性髓细胞白血病生物能量学和细胞增殖的影响。","authors":"Brett R Chrest, McLane M Montgomery, Raphael T Aruleba, Polina Krassovskaia, Emely A Pacheco, James T Hagen, Kayla J Vandiver, Kang Tung, Molly K Alexander, Nicholas C Williamson, Joshua G Taylor, Riley N Bessetti, Heather A Belcher, Filip Jevtovic, Zoe S Terwilliger, Everett C Minchew, Tonya N Zeczycki, Linda May, Nicholas T Broskey, Christopher B Geyer, Karen Litwa, Espen E Spangenburg, Johanna L Hannan, Jessica M Ellis, Joseph M McClung, P Darrell Neufer, Kelsey H Fisher-Wellman","doi":"10.1186/s40170-025-00395-1","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing emphasis has been placed on improving the physiological relevance of cell culture media with formulations such as Human Plasma-Like Medium (HPLM). Given that shifts in mitochondrial metabolism and nutrient use are emerging as anti-cancer targets, the present study sought to investigate the impact of culture media formulation on mitochondrial bioenergetics and cancer cell growth. To do this, we used acute myeloid leukemia (AML) cells and compared acute and chronic effects of HPLM versus different supraphysiological medias. The AML mitochondrial phenotype was largely unaffected by exposure to either physiological or supraphysiological medias, establishing that the key features of AML mitochondria remain phenotypically stable under diverse nutrient conditions and proliferation rates. Both acute and chronic culturing in HPLM slowed AML cell proliferation. However, merely identifying and supplementing single nutrients that were deficient in HPLM did not improve proliferation and was not sufficient to pinpoint actionable fuel preferences. Transferring cells back to native Iscove's Modified Dulbecco's Medium (IMDM) media immediately restored the proliferative phenotype, suggesting responsiveness to the entirety of the nutrient environment. Supraphysiological culture medias other than IMDM were all characterized by slower proliferation; however, none were associated with changes in cell viability, demonstrating that the native culture medium is optimal if the experimental aim is maximal growth. Despite Dulbecco's Modified Eagle Medium (DMEM) being similar in nutrient composition to IMDM and categorized as supraphysiological, both acute and chronic culturing in DMEM resulted in slower growth, akin to what was observed with HPLM. Altogether, independent of growth, AML mitochondria remain largely unperturbed by changes in the culture media, and rather than specific nutrients or physiological relevance, AML cell proliferation is influenced by the complete nutrient profile.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"25"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105319/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of physiological media on acute myeloid leukemia bioenergetics and cell proliferation.\",\"authors\":\"Brett R Chrest, McLane M Montgomery, Raphael T Aruleba, Polina Krassovskaia, Emely A Pacheco, James T Hagen, Kayla J Vandiver, Kang Tung, Molly K Alexander, Nicholas C Williamson, Joshua G Taylor, Riley N Bessetti, Heather A Belcher, Filip Jevtovic, Zoe S Terwilliger, Everett C Minchew, Tonya N Zeczycki, Linda May, Nicholas T Broskey, Christopher B Geyer, Karen Litwa, Espen E Spangenburg, Johanna L Hannan, Jessica M Ellis, Joseph M McClung, P Darrell Neufer, Kelsey H Fisher-Wellman\",\"doi\":\"10.1186/s40170-025-00395-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing emphasis has been placed on improving the physiological relevance of cell culture media with formulations such as Human Plasma-Like Medium (HPLM). Given that shifts in mitochondrial metabolism and nutrient use are emerging as anti-cancer targets, the present study sought to investigate the impact of culture media formulation on mitochondrial bioenergetics and cancer cell growth. To do this, we used acute myeloid leukemia (AML) cells and compared acute and chronic effects of HPLM versus different supraphysiological medias. The AML mitochondrial phenotype was largely unaffected by exposure to either physiological or supraphysiological medias, establishing that the key features of AML mitochondria remain phenotypically stable under diverse nutrient conditions and proliferation rates. Both acute and chronic culturing in HPLM slowed AML cell proliferation. However, merely identifying and supplementing single nutrients that were deficient in HPLM did not improve proliferation and was not sufficient to pinpoint actionable fuel preferences. Transferring cells back to native Iscove's Modified Dulbecco's Medium (IMDM) media immediately restored the proliferative phenotype, suggesting responsiveness to the entirety of the nutrient environment. Supraphysiological culture medias other than IMDM were all characterized by slower proliferation; however, none were associated with changes in cell viability, demonstrating that the native culture medium is optimal if the experimental aim is maximal growth. Despite Dulbecco's Modified Eagle Medium (DMEM) being similar in nutrient composition to IMDM and categorized as supraphysiological, both acute and chronic culturing in DMEM resulted in slower growth, akin to what was observed with HPLM. Altogether, independent of growth, AML mitochondria remain largely unperturbed by changes in the culture media, and rather than specific nutrients or physiological relevance, AML cell proliferation is influenced by the complete nutrient profile.</p>\",\"PeriodicalId\":9418,\"journal\":{\"name\":\"Cancer & Metabolism\",\"volume\":\"13 1\",\"pages\":\"25\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105319/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40170-025-00395-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-025-00395-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
越来越多的重点放在提高细胞培养基的生理相关性与配方,如人血浆样培养基(HPLM)。鉴于线粒体代谢和营养利用的变化正在成为抗癌靶点,本研究旨在研究培养基配方对线粒体生物能量学和癌细胞生长的影响。为此,我们使用急性髓性白血病(AML)细胞,比较了HPLM对不同超生理介质的急性和慢性影响。AML线粒体表型在很大程度上不受暴露于生理或超生理介质的影响,这表明AML线粒体的关键特征在不同的营养条件和增殖速率下保持表型稳定。急性和慢性HPLM培养均减缓AML细胞增殖。然而,仅仅识别和补充HPLM中缺乏的单一营养素并不能改善增殖,也不足以确定可操作的燃料偏好。将细胞转移回原生Iscove's Modified Dulbecco's Medium (IMDM)培养基,立即恢复了增殖表型,表明对整个营养环境的响应。除IMDM外,超生理培养基均表现为增殖较慢;然而,没有一种与细胞活力的变化有关,这表明如果实验目标是最大生长,则天然培养基是最佳的。尽管Dulbecco的改良Eagle培养基(DMEM)在营养成分上与IMDM相似,并且被归类为超生理培养基,但在DMEM中急性和慢性培养都会导致生长缓慢,与HPLM相似。总之,独立于生长,AML线粒体在很大程度上不受培养基变化的干扰,而不是特定的营养物质或生理相关性,AML细胞增殖受到完整的营养成分的影响。
Impact of physiological media on acute myeloid leukemia bioenergetics and cell proliferation.
Increasing emphasis has been placed on improving the physiological relevance of cell culture media with formulations such as Human Plasma-Like Medium (HPLM). Given that shifts in mitochondrial metabolism and nutrient use are emerging as anti-cancer targets, the present study sought to investigate the impact of culture media formulation on mitochondrial bioenergetics and cancer cell growth. To do this, we used acute myeloid leukemia (AML) cells and compared acute and chronic effects of HPLM versus different supraphysiological medias. The AML mitochondrial phenotype was largely unaffected by exposure to either physiological or supraphysiological medias, establishing that the key features of AML mitochondria remain phenotypically stable under diverse nutrient conditions and proliferation rates. Both acute and chronic culturing in HPLM slowed AML cell proliferation. However, merely identifying and supplementing single nutrients that were deficient in HPLM did not improve proliferation and was not sufficient to pinpoint actionable fuel preferences. Transferring cells back to native Iscove's Modified Dulbecco's Medium (IMDM) media immediately restored the proliferative phenotype, suggesting responsiveness to the entirety of the nutrient environment. Supraphysiological culture medias other than IMDM were all characterized by slower proliferation; however, none were associated with changes in cell viability, demonstrating that the native culture medium is optimal if the experimental aim is maximal growth. Despite Dulbecco's Modified Eagle Medium (DMEM) being similar in nutrient composition to IMDM and categorized as supraphysiological, both acute and chronic culturing in DMEM resulted in slower growth, akin to what was observed with HPLM. Altogether, independent of growth, AML mitochondria remain largely unperturbed by changes in the culture media, and rather than specific nutrients or physiological relevance, AML cell proliferation is influenced by the complete nutrient profile.
期刊介绍:
Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.