基于鼻咽癌放疗敏感性的头颈部鳞状细胞癌预后模型。

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Yinjiao Fei, Zhen Liu, Jinling Yuan, Lei Qiu, Yuchen Zhu, Kexin Shi, Jinyan Luo, Mengxing Wu, Weilin Xu, Shu Zhou
{"title":"基于鼻咽癌放疗敏感性的头颈部鳞状细胞癌预后模型。","authors":"Yinjiao Fei, Zhen Liu, Jinling Yuan, Lei Qiu, Yuchen Zhu, Kexin Shi, Jinyan Luo, Mengxing Wu, Weilin Xu, Shu Zhou","doi":"10.1007/s12672-025-02731-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radioresistance significantly impairs treatment efficacy and prognostic outcomes in head and neck squamous cell carcinoma (HNSCC). This study aimed to identify radiotherapy sensitivity-related genes and construct a prognostic model for HNSCC, incorporating insights from nasopharyngeal carcinoma (NPC) as a related subtype.</p><p><strong>Methods: </strong>Differentially expressed genes (DEGs) associated with radiotherapy response were identified using the GSE48501 dataset, primarily derived from NPC. Functional annotation was performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Using the TCGA-HNSC dataset, we developed a prognostic risk model through univariate and LASSO-Cox regression analyses. The model was validated for prognostic accuracy and further analyzed for associations with immune cell infiltration, drug sensitivity, and survival outcomes using CIBERSORT, TIMER, Genomics of Drug Sensitivity in Cancer (GDSC), and nomogram analysis.</p><p><strong>Results: </strong>We identified 263 DEGs related to radiotherapy sensitivity and developed a robust prognostic model based on 8 hub genes. The model effectively stratified patients into high- and low-risk groups, with superior overall survival (OS) observed in the low-risk group. The Receiver Operating Characteristic (ROC) analysis confirmed high predictive accuracy for 1-, 3-, and 5-year OS. Immune infiltration analysis revealed reduced immune activity in the high-risk group, while drug sensitivity analysis highlighted potential therapeutic strategies. The nomogram further demonstrated excellent predictive performance.</p><p><strong>Conclusion: </strong>This study bridges insights from NPC-derived DEGs and HNSCC prognostic modeling, emphasizing radiotherapy sensitivity and integrating immune and therapeutic dimensions. The resulting model offers a novel approach to improve prognostic accuracy and guide treatment strategies for HNSCC patients.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"933"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106292/pdf/","citationCount":"0","resultStr":"{\"title\":\"A prognostic model for head and neck squamous cell carcinoma based on radiotherapy sensitivity insights from nasopharyngeal carcinoma.\",\"authors\":\"Yinjiao Fei, Zhen Liu, Jinling Yuan, Lei Qiu, Yuchen Zhu, Kexin Shi, Jinyan Luo, Mengxing Wu, Weilin Xu, Shu Zhou\",\"doi\":\"10.1007/s12672-025-02731-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Radioresistance significantly impairs treatment efficacy and prognostic outcomes in head and neck squamous cell carcinoma (HNSCC). This study aimed to identify radiotherapy sensitivity-related genes and construct a prognostic model for HNSCC, incorporating insights from nasopharyngeal carcinoma (NPC) as a related subtype.</p><p><strong>Methods: </strong>Differentially expressed genes (DEGs) associated with radiotherapy response were identified using the GSE48501 dataset, primarily derived from NPC. Functional annotation was performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Using the TCGA-HNSC dataset, we developed a prognostic risk model through univariate and LASSO-Cox regression analyses. The model was validated for prognostic accuracy and further analyzed for associations with immune cell infiltration, drug sensitivity, and survival outcomes using CIBERSORT, TIMER, Genomics of Drug Sensitivity in Cancer (GDSC), and nomogram analysis.</p><p><strong>Results: </strong>We identified 263 DEGs related to radiotherapy sensitivity and developed a robust prognostic model based on 8 hub genes. The model effectively stratified patients into high- and low-risk groups, with superior overall survival (OS) observed in the low-risk group. The Receiver Operating Characteristic (ROC) analysis confirmed high predictive accuracy for 1-, 3-, and 5-year OS. Immune infiltration analysis revealed reduced immune activity in the high-risk group, while drug sensitivity analysis highlighted potential therapeutic strategies. The nomogram further demonstrated excellent predictive performance.</p><p><strong>Conclusion: </strong>This study bridges insights from NPC-derived DEGs and HNSCC prognostic modeling, emphasizing radiotherapy sensitivity and integrating immune and therapeutic dimensions. The resulting model offers a novel approach to improve prognostic accuracy and guide treatment strategies for HNSCC patients.</p>\",\"PeriodicalId\":11148,\"journal\":{\"name\":\"Discover. Oncology\",\"volume\":\"16 1\",\"pages\":\"933\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106292/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover. Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12672-025-02731-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02731-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:放射耐药显著影响头颈部鳞状细胞癌(HNSCC)的治疗效果和预后。本研究旨在识别放疗敏感性相关基因,构建HNSCC的预后模型,并结合鼻咽癌(NPC)作为相关亚型的见解。方法:使用主要来自NPC的GSE48501数据集鉴定与放疗反应相关的差异表达基因(DEGs)。通过基因本体(GO)和京都基因与基因组百科全书(KEGG)途径分析进行功能注释。利用TCGA-HNSC数据集,我们通过单变量和LASSO-Cox回归分析建立了预后风险模型。通过CIBERSORT、TIMER、癌症药物敏感性基因组学(GDSC)和nomogram分析,验证了该模型的预后准确性,并进一步分析了其与免疫细胞浸润、药物敏感性和生存结果的关系。结果:我们确定了263个与放疗敏感性相关的deg,并基于8个中心基因建立了一个强大的预后模型。该模型有效地将患者分为高风险组和低风险组,低风险组的总生存期(OS)更高。受试者工作特征(ROC)分析证实了对1年、3年和5年OS的高预测准确性。免疫浸润分析显示高危组免疫活性降低,而药物敏感性分析强调了潜在的治疗策略。nomogram进一步证明了良好的预测性能。结论:该研究将npc衍生的deg和HNSCC预后模型的见解联系起来,强调放疗敏感性,并整合免疫和治疗维度。由此产生的模型为提高HNSCC患者的预后准确性和指导治疗策略提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A prognostic model for head and neck squamous cell carcinoma based on radiotherapy sensitivity insights from nasopharyngeal carcinoma.

Background: Radioresistance significantly impairs treatment efficacy and prognostic outcomes in head and neck squamous cell carcinoma (HNSCC). This study aimed to identify radiotherapy sensitivity-related genes and construct a prognostic model for HNSCC, incorporating insights from nasopharyngeal carcinoma (NPC) as a related subtype.

Methods: Differentially expressed genes (DEGs) associated with radiotherapy response were identified using the GSE48501 dataset, primarily derived from NPC. Functional annotation was performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Using the TCGA-HNSC dataset, we developed a prognostic risk model through univariate and LASSO-Cox regression analyses. The model was validated for prognostic accuracy and further analyzed for associations with immune cell infiltration, drug sensitivity, and survival outcomes using CIBERSORT, TIMER, Genomics of Drug Sensitivity in Cancer (GDSC), and nomogram analysis.

Results: We identified 263 DEGs related to radiotherapy sensitivity and developed a robust prognostic model based on 8 hub genes. The model effectively stratified patients into high- and low-risk groups, with superior overall survival (OS) observed in the low-risk group. The Receiver Operating Characteristic (ROC) analysis confirmed high predictive accuracy for 1-, 3-, and 5-year OS. Immune infiltration analysis revealed reduced immune activity in the high-risk group, while drug sensitivity analysis highlighted potential therapeutic strategies. The nomogram further demonstrated excellent predictive performance.

Conclusion: This study bridges insights from NPC-derived DEGs and HNSCC prognostic modeling, emphasizing radiotherapy sensitivity and integrating immune and therapeutic dimensions. The resulting model offers a novel approach to improve prognostic accuracy and guide treatment strategies for HNSCC patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信