PhosF3C:一种具有微调蛋白语言模型和构象的特征融合结构,用于预测一般磷酸化位点。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yuhuan Liu, Xueying Wang, Haitian Zhong, Jixiu Zhai, Xiaojuan Gong, Tianchi Lu
{"title":"PhosF3C:一种具有微调蛋白语言模型和构象的特征融合结构,用于预测一般磷酸化位点。","authors":"Yuhuan Liu, Xueying Wang, Haitian Zhong, Jixiu Zhai, Xiaojuan Gong, Tianchi Lu","doi":"10.1093/bib/bbaf242","DOIUrl":null,"url":null,"abstract":"<p><p>Protein phosphorylation, a key post-translational modification, provides essential insight into protein properties, making its prediction highly significant. Using the emerging capabilities of large language models (LLMs), we apply Low-Rank Adaptation (LoRA) fine-tuning to ESM2, a powerful protein large language model, to efficiently extract features with minimal computational resources, optimizing task-specific text alignment. Additionally, we integrate the conformer architecture with the feature coupling unit to enhance local and global feature exchange, further improving prediction accuracy. Our model achieves state-of-the-art performance, obtaining area under the curve scores of 79.5%, 76.3%, and 71.4% at the S, T, and Y sites of the general data sets. Based on the powerful feature extraction capabilities of LLMs, we conduct a series of analyses on protein representations, including studies on their structure, sequence, and various chemical properties [such as hydrophobicity (GRAVY), surface charge, and isoelectric point]. We propose a test method called linear regression tomography which is a top-down method using representation to explore the model's feature extraction capabilities. Our resources, including data and code, are publicly accessible at https://github.com/SkywalkerLuke/PhosF3C.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PhosF3C: a feature fusion architecture with fine-tuned protein language model and conformer for prediction of general phosphorylation site.\",\"authors\":\"Yuhuan Liu, Xueying Wang, Haitian Zhong, Jixiu Zhai, Xiaojuan Gong, Tianchi Lu\",\"doi\":\"10.1093/bib/bbaf242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein phosphorylation, a key post-translational modification, provides essential insight into protein properties, making its prediction highly significant. Using the emerging capabilities of large language models (LLMs), we apply Low-Rank Adaptation (LoRA) fine-tuning to ESM2, a powerful protein large language model, to efficiently extract features with minimal computational resources, optimizing task-specific text alignment. Additionally, we integrate the conformer architecture with the feature coupling unit to enhance local and global feature exchange, further improving prediction accuracy. Our model achieves state-of-the-art performance, obtaining area under the curve scores of 79.5%, 76.3%, and 71.4% at the S, T, and Y sites of the general data sets. Based on the powerful feature extraction capabilities of LLMs, we conduct a series of analyses on protein representations, including studies on their structure, sequence, and various chemical properties [such as hydrophobicity (GRAVY), surface charge, and isoelectric point]. We propose a test method called linear regression tomography which is a top-down method using representation to explore the model's feature extraction capabilities. Our resources, including data and code, are publicly accessible at https://github.com/SkywalkerLuke/PhosF3C.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf242\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf242","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质磷酸化是一种关键的翻译后修饰,它提供了对蛋白质特性的基本洞察,使其预测非常重要。利用大型语言模型(LLMs)的新兴功能,我们将低秩自适应(LoRA)微调应用于功能强大的蛋白质大型语言模型ESM2,以最小的计算资源有效地提取特征,优化特定任务的文本对齐。此外,我们将共形结构与特征耦合单元相结合,增强了局部和全局特征交换,进一步提高了预测精度。我们的模型达到了最先进的性能,在一般数据集的S、T和Y点上,曲线下面积得分分别为79.5%、76.3%和71.4%。基于llm强大的特征提取能力,我们对蛋白质表征进行了一系列分析,包括它们的结构、序列和各种化学性质[如疏水性(卤)、表面电荷和等电点]的研究。我们提出了一种称为线性回归断层扫描的测试方法,这是一种自上而下的方法,使用表示来探索模型的特征提取能力。我们的资源,包括数据和代码,都可以在https://github.com/SkywalkerLuke/PhosF3C上公开访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PhosF3C: a feature fusion architecture with fine-tuned protein language model and conformer for prediction of general phosphorylation site.

Protein phosphorylation, a key post-translational modification, provides essential insight into protein properties, making its prediction highly significant. Using the emerging capabilities of large language models (LLMs), we apply Low-Rank Adaptation (LoRA) fine-tuning to ESM2, a powerful protein large language model, to efficiently extract features with minimal computational resources, optimizing task-specific text alignment. Additionally, we integrate the conformer architecture with the feature coupling unit to enhance local and global feature exchange, further improving prediction accuracy. Our model achieves state-of-the-art performance, obtaining area under the curve scores of 79.5%, 76.3%, and 71.4% at the S, T, and Y sites of the general data sets. Based on the powerful feature extraction capabilities of LLMs, we conduct a series of analyses on protein representations, including studies on their structure, sequence, and various chemical properties [such as hydrophobicity (GRAVY), surface charge, and isoelectric point]. We propose a test method called linear regression tomography which is a top-down method using representation to explore the model's feature extraction capabilities. Our resources, including data and code, are publicly accessible at https://github.com/SkywalkerLuke/PhosF3C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信