Fulan Deng, Jiawei Zou, Miaochen Wang, Yida Gu, Jiale Wu, Lianchong Gao, Yuan Ji, Henry H Y Tong, Jie Chen, Wantao Chen, Lianjiang Tan, Yaoqing Chu, Xin Zou, Jie Hao
{"title":"霸天虎:一种基于关联的rna序列反褶积策略,灵感来自安娜·卡列尼娜原理的变体。","authors":"Fulan Deng, Jiawei Zou, Miaochen Wang, Yida Gu, Jiale Wu, Lianchong Gao, Yuan Ji, Henry H Y Tong, Jie Chen, Wantao Chen, Lianjiang Tan, Yaoqing Chu, Xin Zou, Jie Hao","doi":"10.1093/bib/bbaf234","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately deconvoluting cellular composition from bulk RNA-seq data is pivotal for understanding the tumor microenvironment and advancing precision medicine. Existing methods often struggle to consistently and accurately quantify cell types across heterogeneous RNA-seq datasets, particularly when ground truths are unavailable. In this study, we introduce DECEPTICON, a deconvolution strategy inspired by the Anna Karenina principle, which postulates that successful outcomes share common traits, while failures are more varied. DECEPTICON selects top-performing methods by leveraging correlations between different strategies and combines them dynamically to enhance performance. Our approach demonstrates superior accuracy in predicting cell-type proportions across multiple tumor datasets, improving correlation by 23.9% and reducing root mean square error by 73.5% compared to the best of 50 analyzed strategies. Applied to The Cancer Genome Atlas (TCGA) datasets for breast carcinoma, cervical squamous cell carcinoma, and lung adenocarcinoma, DECEPTICON-based predictions showed improved differentiation between patient prognoses. This correlation-based strategy offers a reliable, flexible tool for deconvoluting complex transcriptomic data and highlights its potential in refining prognostic assessments in oncology and advancing cancer biology.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DECEPTICON: a correlation-based strategy for RNA-seq deconvolution inspired by a variation of the Anna Karenina principle.\",\"authors\":\"Fulan Deng, Jiawei Zou, Miaochen Wang, Yida Gu, Jiale Wu, Lianchong Gao, Yuan Ji, Henry H Y Tong, Jie Chen, Wantao Chen, Lianjiang Tan, Yaoqing Chu, Xin Zou, Jie Hao\",\"doi\":\"10.1093/bib/bbaf234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurately deconvoluting cellular composition from bulk RNA-seq data is pivotal for understanding the tumor microenvironment and advancing precision medicine. Existing methods often struggle to consistently and accurately quantify cell types across heterogeneous RNA-seq datasets, particularly when ground truths are unavailable. In this study, we introduce DECEPTICON, a deconvolution strategy inspired by the Anna Karenina principle, which postulates that successful outcomes share common traits, while failures are more varied. DECEPTICON selects top-performing methods by leveraging correlations between different strategies and combines them dynamically to enhance performance. Our approach demonstrates superior accuracy in predicting cell-type proportions across multiple tumor datasets, improving correlation by 23.9% and reducing root mean square error by 73.5% compared to the best of 50 analyzed strategies. Applied to The Cancer Genome Atlas (TCGA) datasets for breast carcinoma, cervical squamous cell carcinoma, and lung adenocarcinoma, DECEPTICON-based predictions showed improved differentiation between patient prognoses. This correlation-based strategy offers a reliable, flexible tool for deconvoluting complex transcriptomic data and highlights its potential in refining prognostic assessments in oncology and advancing cancer biology.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf234\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf234","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
DECEPTICON: a correlation-based strategy for RNA-seq deconvolution inspired by a variation of the Anna Karenina principle.
Accurately deconvoluting cellular composition from bulk RNA-seq data is pivotal for understanding the tumor microenvironment and advancing precision medicine. Existing methods often struggle to consistently and accurately quantify cell types across heterogeneous RNA-seq datasets, particularly when ground truths are unavailable. In this study, we introduce DECEPTICON, a deconvolution strategy inspired by the Anna Karenina principle, which postulates that successful outcomes share common traits, while failures are more varied. DECEPTICON selects top-performing methods by leveraging correlations between different strategies and combines them dynamically to enhance performance. Our approach demonstrates superior accuracy in predicting cell-type proportions across multiple tumor datasets, improving correlation by 23.9% and reducing root mean square error by 73.5% compared to the best of 50 analyzed strategies. Applied to The Cancer Genome Atlas (TCGA) datasets for breast carcinoma, cervical squamous cell carcinoma, and lung adenocarcinoma, DECEPTICON-based predictions showed improved differentiation between patient prognoses. This correlation-based strategy offers a reliable, flexible tool for deconvoluting complex transcriptomic data and highlights its potential in refining prognostic assessments in oncology and advancing cancer biology.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.