肾内科大数据预测与规范分析技术的适用性评估

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Proteomics Pub Date : 2025-05-27 DOI:10.1002/pmic.202400135
Riste Stojanov, Milos Jovanovik, Sasho Gramatikov, Igor Mishkovski, Eftim Zdravevski, Darko Sasanski, Zorica Karapancheva, Goce Spasovski, Ivona Vasileska, Tome Eftimov, Wu Zhuojun, Joachim Jankowski, Dimitar Trajanov
{"title":"肾内科大数据预测与规范分析技术的适用性评估","authors":"Riste Stojanov, Milos Jovanovik, Sasho Gramatikov, Igor Mishkovski, Eftim Zdravevski, Darko Sasanski, Zorica Karapancheva, Goce Spasovski, Ivona Vasileska, Tome Eftimov, Wu Zhuojun, Joachim Jankowski, Dimitar Trajanov","doi":"10.1002/pmic.202400135","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of big data into nephrology research will open new avenues for analyzing and understanding complex biological datasets, driving advances in personalized management of kidney diseases. This paper describes the multifaceted challenges and opportunities by incorporating big data in nephrology, emphasizing the importance of data standardization, advanced storage solutions, and advanced analytical methods. We discuss the role of data science workflows, including data collection, preprocessing, integration, and analysis, in facilitating comprehensive insights into disease mechanisms and patient outcomes. Furthermore, we highlight predictive and prescriptive analytics, as well as the application of large language models (LLMs) in improving clinical decision-making and enhancing the accuracy of disease predictions. The use of high-performance computing (HPC) is also examined, showcasing its role in processing large-scale datasets and accelerating machine learning algorithms. Through this exploration, we aim to provide a comprehensive overview of the current state and future directions of big data analytics in nephrology, with a focus on enhancing patient care and advancing medical research.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400135"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applicability Assessment of Technologies for Predictive and Prescriptive Analytics of Nephrology Big Data.\",\"authors\":\"Riste Stojanov, Milos Jovanovik, Sasho Gramatikov, Igor Mishkovski, Eftim Zdravevski, Darko Sasanski, Zorica Karapancheva, Goce Spasovski, Ivona Vasileska, Tome Eftimov, Wu Zhuojun, Joachim Jankowski, Dimitar Trajanov\",\"doi\":\"10.1002/pmic.202400135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of big data into nephrology research will open new avenues for analyzing and understanding complex biological datasets, driving advances in personalized management of kidney diseases. This paper describes the multifaceted challenges and opportunities by incorporating big data in nephrology, emphasizing the importance of data standardization, advanced storage solutions, and advanced analytical methods. We discuss the role of data science workflows, including data collection, preprocessing, integration, and analysis, in facilitating comprehensive insights into disease mechanisms and patient outcomes. Furthermore, we highlight predictive and prescriptive analytics, as well as the application of large language models (LLMs) in improving clinical decision-making and enhancing the accuracy of disease predictions. The use of high-performance computing (HPC) is also examined, showcasing its role in processing large-scale datasets and accelerating machine learning algorithms. Through this exploration, we aim to provide a comprehensive overview of the current state and future directions of big data analytics in nephrology, with a focus on enhancing patient care and advancing medical research.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\" \",\"pages\":\"e202400135\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pmic.202400135\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400135","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

将大数据整合到肾脏学研究中,将为分析和理解复杂的生物数据集开辟新的途径,推动肾脏疾病个性化管理的进步。本文描述了将大数据纳入肾脏病学的多方面挑战和机遇,强调了数据标准化、先进存储解决方案和先进分析方法的重要性。我们讨论了数据科学工作流程的作用,包括数据收集、预处理、集成和分析,以促进对疾病机制和患者结果的全面见解。此外,我们强调预测和规范分析,以及大型语言模型(LLMs)在改善临床决策和提高疾病预测准确性方面的应用。高性能计算(HPC)的使用也被检查,展示其在处理大规模数据集和加速机器学习算法中的作用。通过这一探索,我们旨在全面概述肾脏学大数据分析的现状和未来方向,重点是加强患者护理和推进医学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applicability Assessment of Technologies for Predictive and Prescriptive Analytics of Nephrology Big Data.

The integration of big data into nephrology research will open new avenues for analyzing and understanding complex biological datasets, driving advances in personalized management of kidney diseases. This paper describes the multifaceted challenges and opportunities by incorporating big data in nephrology, emphasizing the importance of data standardization, advanced storage solutions, and advanced analytical methods. We discuss the role of data science workflows, including data collection, preprocessing, integration, and analysis, in facilitating comprehensive insights into disease mechanisms and patient outcomes. Furthermore, we highlight predictive and prescriptive analytics, as well as the application of large language models (LLMs) in improving clinical decision-making and enhancing the accuracy of disease predictions. The use of high-performance computing (HPC) is also examined, showcasing its role in processing large-scale datasets and accelerating machine learning algorithms. Through this exploration, we aim to provide a comprehensive overview of the current state and future directions of big data analytics in nephrology, with a focus on enhancing patient care and advancing medical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信