鼠李糖乳杆菌gg驱动的精氨酸代谢重塑减轻肠道屏障功能障碍。

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Jayson M Antonio, Yue Liu, Panan Suntornsaratoon, Abigail Jones, Jayanth Ambat, Ajitha Bala, Joshua Joby Kanattu, Juan Flores, Sheila Bandyopadhyay, Ravij Upadhyay, Jagannatham Naidu Bhupana, Xiaoyang Su, Wei Vivian Li, Nan Gao, Ronaldo P Ferraris
{"title":"鼠李糖乳杆菌gg驱动的精氨酸代谢重塑减轻肠道屏障功能障碍。","authors":"Jayson M Antonio, Yue Liu, Panan Suntornsaratoon, Abigail Jones, Jayanth Ambat, Ajitha Bala, Joshua Joby Kanattu, Juan Flores, Sheila Bandyopadhyay, Ravij Upadhyay, Jagannatham Naidu Bhupana, Xiaoyang Su, Wei Vivian Li, Nan Gao, Ronaldo P Ferraris","doi":"10.1152/ajpgi.00366.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBDs) and gut barrier impairment are associated with changes in dietary tryptophan and arginine metabolism, but mechanisms of barrier perturbation and restoration are unclear. We show here that the widely consumed probiotic <i>Lacticaseibacillus rhamnosus</i> GG (LGG) enhances gut barrier functions in part through stimulating the intestinal arginine metabolic pathway, and this mechanism depends on the sufficiency of dietary tryptophan in the host. Specifically, LGG markedly upregulates argininosuccinate lyase (ASL), the enzyme that breaks down argininosuccinate into arginine. ASL expression is markedly reduced during experimental colitis with an accumulation of serum argininosuccinate. LGG colonization in mice reduces serum argininosuccinate, a metabolite that inversely correlates with tight junction gene expression, impairs barrier function, and exacerbates dextran sodium sulfate colitis. We show that LGG-derived indoles as well as arginine metabolites enhanced argininosuccinate lyase (ASL) and nitric oxide synthase (NOS2) expression, linking microbial metabolism to nitric oxide production and epithelial homeostasis. Patients with IBD have increased ASS1 and decreased ASL expression, suggesting a metabolic bottleneck driving ASA accumulation. We propose that signaling pathways underlying LGG and tryptophan-mediated ASL upregulation can be useful therapeutic targets to normalize arginine metabolism in select patients with IBD.<b>NEW & NOTEWORTHY</b> This study identifies a novel probiotic-driven mechanism linking dietary tryptophan and host arginine metabolism. <i>Lacticaseibacillus rhamnosus</i> GG, in synergy with tryptophan, enhances gut barrier integrity by upregulating argininosuccinate lyase (ASL), a critical enzyme in arginine biosynthesis. Furthermore, we uncover ASL downregulation and serum argininosuccinate elevation in experimental colitis in mice, suggesting a target to guide precision probiotics.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G162-G185"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>Lacticaseibacillus rhamnosus GG</i>-driven remodeling of arginine metabolism mitigates gut barrier dysfunction.\",\"authors\":\"Jayson M Antonio, Yue Liu, Panan Suntornsaratoon, Abigail Jones, Jayanth Ambat, Ajitha Bala, Joshua Joby Kanattu, Juan Flores, Sheila Bandyopadhyay, Ravij Upadhyay, Jagannatham Naidu Bhupana, Xiaoyang Su, Wei Vivian Li, Nan Gao, Ronaldo P Ferraris\",\"doi\":\"10.1152/ajpgi.00366.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory bowel diseases (IBDs) and gut barrier impairment are associated with changes in dietary tryptophan and arginine metabolism, but mechanisms of barrier perturbation and restoration are unclear. We show here that the widely consumed probiotic <i>Lacticaseibacillus rhamnosus</i> GG (LGG) enhances gut barrier functions in part through stimulating the intestinal arginine metabolic pathway, and this mechanism depends on the sufficiency of dietary tryptophan in the host. Specifically, LGG markedly upregulates argininosuccinate lyase (ASL), the enzyme that breaks down argininosuccinate into arginine. ASL expression is markedly reduced during experimental colitis with an accumulation of serum argininosuccinate. LGG colonization in mice reduces serum argininosuccinate, a metabolite that inversely correlates with tight junction gene expression, impairs barrier function, and exacerbates dextran sodium sulfate colitis. We show that LGG-derived indoles as well as arginine metabolites enhanced argininosuccinate lyase (ASL) and nitric oxide synthase (NOS2) expression, linking microbial metabolism to nitric oxide production and epithelial homeostasis. Patients with IBD have increased ASS1 and decreased ASL expression, suggesting a metabolic bottleneck driving ASA accumulation. We propose that signaling pathways underlying LGG and tryptophan-mediated ASL upregulation can be useful therapeutic targets to normalize arginine metabolism in select patients with IBD.<b>NEW & NOTEWORTHY</b> This study identifies a novel probiotic-driven mechanism linking dietary tryptophan and host arginine metabolism. <i>Lacticaseibacillus rhamnosus</i> GG, in synergy with tryptophan, enhances gut barrier integrity by upregulating argininosuccinate lyase (ASL), a critical enzyme in arginine biosynthesis. Furthermore, we uncover ASL downregulation and serum argininosuccinate elevation in experimental colitis in mice, suggesting a target to guide precision probiotics.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"G162-G185\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00366.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00366.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

炎症性肠病(IBD)和肠道屏障损伤与膳食色氨酸和精氨酸代谢的变化有关,但屏障扰动和恢复的机制尚不清楚。我们在此表明,广泛食用的益生菌鼠李糖乳杆菌GG (LGG)部分通过刺激肠道精氨酸代谢途径增强肠道屏障功能,而这种机制取决于宿主饮食中色氨酸的充足性。具体来说,LGG显著上调精氨酸琥珀酸裂解酶(ASL),该酶将精氨酸琥珀酸分解为精氨酸。实验性结肠炎期间,ASL表达明显减少,血清精氨酸琥珀酸盐积累。LGG在小鼠中的定植降低了血清精氨酸琥珀酸盐(一种与紧密连接基因表达负相关的代谢物),损害了屏障功能并加剧了DSS结肠炎。我们发现,lgg衍生的吲哚和精氨酸代谢物增强了Asl和Nos2的表达,将微生物代谢与一氧化氮产生和上皮稳态联系起来。IBD患者ASS1升高,ASL表达降低,提示代谢瓶颈驱动ASA积累。我们提出LGG和色氨酸介导的ASL上调的信号通路可以成为IBD患者精氨酸代谢正常化的有用治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lacticaseibacillus rhamnosus GG-driven remodeling of arginine metabolism mitigates gut barrier dysfunction.

Inflammatory bowel diseases (IBDs) and gut barrier impairment are associated with changes in dietary tryptophan and arginine metabolism, but mechanisms of barrier perturbation and restoration are unclear. We show here that the widely consumed probiotic Lacticaseibacillus rhamnosus GG (LGG) enhances gut barrier functions in part through stimulating the intestinal arginine metabolic pathway, and this mechanism depends on the sufficiency of dietary tryptophan in the host. Specifically, LGG markedly upregulates argininosuccinate lyase (ASL), the enzyme that breaks down argininosuccinate into arginine. ASL expression is markedly reduced during experimental colitis with an accumulation of serum argininosuccinate. LGG colonization in mice reduces serum argininosuccinate, a metabolite that inversely correlates with tight junction gene expression, impairs barrier function, and exacerbates dextran sodium sulfate colitis. We show that LGG-derived indoles as well as arginine metabolites enhanced argininosuccinate lyase (ASL) and nitric oxide synthase (NOS2) expression, linking microbial metabolism to nitric oxide production and epithelial homeostasis. Patients with IBD have increased ASS1 and decreased ASL expression, suggesting a metabolic bottleneck driving ASA accumulation. We propose that signaling pathways underlying LGG and tryptophan-mediated ASL upregulation can be useful therapeutic targets to normalize arginine metabolism in select patients with IBD.NEW & NOTEWORTHY This study identifies a novel probiotic-driven mechanism linking dietary tryptophan and host arginine metabolism. Lacticaseibacillus rhamnosus GG, in synergy with tryptophan, enhances gut barrier integrity by upregulating argininosuccinate lyase (ASL), a critical enzyme in arginine biosynthesis. Furthermore, we uncover ASL downregulation and serum argininosuccinate elevation in experimental colitis in mice, suggesting a target to guide precision probiotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信