ElixirSeeker:利用融合分子指纹发现延长寿命化合物的机器学习框架。

IF 8 1区 医学 Q1 CELL BIOLOGY
Aging Cell Pub Date : 2025-05-26 DOI:10.1111/acel.70116
Yan Pan, Hongxia Cai, Fang Ye, Wentao Xu, Zhihang Huang, Jingyuan Zhu, Yiwen Gong, Yutong Li, Anastasia Ngozi Ezemaduka, Shan Gao, Shunqi Liu, Guojun Li, Hao Li, Jing Yang, Junyu Ning, Bo Xian
{"title":"ElixirSeeker:利用融合分子指纹发现延长寿命化合物的机器学习框架。","authors":"Yan Pan, Hongxia Cai, Fang Ye, Wentao Xu, Zhihang Huang, Jingyuan Zhu, Yiwen Gong, Yutong Li, Anastasia Ngozi Ezemaduka, Shan Gao, Shunqi Liu, Guojun Li, Hao Li, Jing Yang, Junyu Ning, Bo Xian","doi":"10.1111/acel.70116","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the growing interest in developing anti-aging drugs, high costs and low success rates of traditional drug discovery methods pose significant challenges. Aging is a complex biological process associated with numerous diseases, making the identification of compounds that can modulate aging mechanisms critically important. Accelerating the discovery of potential anti-aging compounds is essential to overcome these barriers and enhance lifespan and healthspan. Here, we present ElixirSeeker, a machine learning framework designed to maximize feature capture of lifespan-extending compounds through multi-fingerprint fusion mechanisms. Utilizing this approach, we identified several promising candidate drugs from external compound databases. We tested the top six hits in Caenorhabditis elegans and found that four of these compounds-including Praeruptorin C, Polyphyllin VI, Thymoquinone, and Medrysone-extended the organism's lifespan. This study demonstrates that ElixirSeeker effectively accelerates the identification of viable anti-aging compounds, potentially reducing costs and increasing the success rate of drug development in this field.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70116"},"PeriodicalIF":8.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ElixirSeeker: A Machine Learning Framework Utilizing Fusion Molecular Fingerprints for the Discovery of Lifespan-Extending Compounds.\",\"authors\":\"Yan Pan, Hongxia Cai, Fang Ye, Wentao Xu, Zhihang Huang, Jingyuan Zhu, Yiwen Gong, Yutong Li, Anastasia Ngozi Ezemaduka, Shan Gao, Shunqi Liu, Guojun Li, Hao Li, Jing Yang, Junyu Ning, Bo Xian\",\"doi\":\"10.1111/acel.70116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the growing interest in developing anti-aging drugs, high costs and low success rates of traditional drug discovery methods pose significant challenges. Aging is a complex biological process associated with numerous diseases, making the identification of compounds that can modulate aging mechanisms critically important. Accelerating the discovery of potential anti-aging compounds is essential to overcome these barriers and enhance lifespan and healthspan. Here, we present ElixirSeeker, a machine learning framework designed to maximize feature capture of lifespan-extending compounds through multi-fingerprint fusion mechanisms. Utilizing this approach, we identified several promising candidate drugs from external compound databases. We tested the top six hits in Caenorhabditis elegans and found that four of these compounds-including Praeruptorin C, Polyphyllin VI, Thymoquinone, and Medrysone-extended the organism's lifespan. This study demonstrates that ElixirSeeker effectively accelerates the identification of viable anti-aging compounds, potentially reducing costs and increasing the success rate of drug development in this field.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e70116\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.70116\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70116","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管人们对开发抗衰老药物越来越感兴趣,但传统药物发现方法的高成本和低成功率构成了重大挑战。衰老是一个复杂的生物过程,与许多疾病有关,因此确定可以调节衰老机制的化合物至关重要。加速发现潜在的抗衰老化合物对于克服这些障碍、延长寿命和健康寿命至关重要。在这里,我们提出了ElixirSeeker,这是一个机器学习框架,旨在通过多指纹融合机制最大限度地获取延长寿命的化合物的特征。利用这种方法,我们从外部化合物数据库中确定了几种有希望的候选药物。我们测试了秀丽隐杆线虫中最受欢迎的六种化合物,发现其中的四种化合物——包括前鞭毛菌素C、多叶毛素VI、百里醌和麦地利生——延长了生物体的寿命。这项研究表明,ElixirSeeker有效地加速了抗衰老化合物的鉴定,潜在地降低了成本,提高了该领域药物开发的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ElixirSeeker: A Machine Learning Framework Utilizing Fusion Molecular Fingerprints for the Discovery of Lifespan-Extending Compounds.

Despite the growing interest in developing anti-aging drugs, high costs and low success rates of traditional drug discovery methods pose significant challenges. Aging is a complex biological process associated with numerous diseases, making the identification of compounds that can modulate aging mechanisms critically important. Accelerating the discovery of potential anti-aging compounds is essential to overcome these barriers and enhance lifespan and healthspan. Here, we present ElixirSeeker, a machine learning framework designed to maximize feature capture of lifespan-extending compounds through multi-fingerprint fusion mechanisms. Utilizing this approach, we identified several promising candidate drugs from external compound databases. We tested the top six hits in Caenorhabditis elegans and found that four of these compounds-including Praeruptorin C, Polyphyllin VI, Thymoquinone, and Medrysone-extended the organism's lifespan. This study demonstrates that ElixirSeeker effectively accelerates the identification of viable anti-aging compounds, potentially reducing costs and increasing the success rate of drug development in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信