利用机器学习分析生物分子的分子动力学模拟。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Alfie-Louise R Brownless, Elisa Rheaume, Katie M Kuo, Shina C L Kamerlin, James C Gumbart
{"title":"利用机器学习分析生物分子的分子动力学模拟。","authors":"Alfie-Louise R Brownless, Elisa Rheaume, Katie M Kuo, Shina C L Kamerlin, James C Gumbart","doi":"10.1021/acs.jpcb.4c08824","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) techniques have become powerful tools in both industrial and academic settings. Their ability to facilitate analysis of complex data and generation of predictive insights is transforming how scientific problems are approached across a wide range of disciplines. In this tutorial, we present a cursory introduction to three widely used ML techniques─logistic regression, random forest, and multilayer perceptron─applied toward analyzing molecular dynamics (MD) trajectory data. We employ our chosen ML models to the study of the SARS-CoV-2 spike protein receptor binding domain interacting with the receptor ACE2. We develop a pipeline for processing MD simulation trajectory data and identifying residues that significantly impact the stability of the complex.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning to Analyze Molecular Dynamics Simulations of Biomolecules.\",\"authors\":\"Alfie-Louise R Brownless, Elisa Rheaume, Katie M Kuo, Shina C L Kamerlin, James C Gumbart\",\"doi\":\"10.1021/acs.jpcb.4c08824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning (ML) techniques have become powerful tools in both industrial and academic settings. Their ability to facilitate analysis of complex data and generation of predictive insights is transforming how scientific problems are approached across a wide range of disciplines. In this tutorial, we present a cursory introduction to three widely used ML techniques─logistic regression, random forest, and multilayer perceptron─applied toward analyzing molecular dynamics (MD) trajectory data. We employ our chosen ML models to the study of the SARS-CoV-2 spike protein receptor binding domain interacting with the receptor ACE2. We develop a pipeline for processing MD simulation trajectory data and identifying residues that significantly impact the stability of the complex.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c08824\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08824","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)技术已经成为工业和学术环境中的强大工具。它们促进复杂数据分析和产生预测性见解的能力正在改变跨广泛学科处理科学问题的方式。在本教程中,我们粗略介绍了三种广泛使用的机器学习技术──逻辑回归、随机森林和多层感知器──用于分析分子动力学(MD)轨迹数据。我们采用我们选择的ML模型来研究SARS-CoV-2刺突蛋白受体结合域与受体ACE2的相互作用。我们开发了一个管道来处理MD模拟轨迹数据并识别显著影响复合物稳定性的残留物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Machine Learning to Analyze Molecular Dynamics Simulations of Biomolecules.

Machine learning (ML) techniques have become powerful tools in both industrial and academic settings. Their ability to facilitate analysis of complex data and generation of predictive insights is transforming how scientific problems are approached across a wide range of disciplines. In this tutorial, we present a cursory introduction to three widely used ML techniques─logistic regression, random forest, and multilayer perceptron─applied toward analyzing molecular dynamics (MD) trajectory data. We employ our chosen ML models to the study of the SARS-CoV-2 spike protein receptor binding domain interacting with the receptor ACE2. We develop a pipeline for processing MD simulation trajectory data and identifying residues that significantly impact the stability of the complex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信