Alfie-Louise R Brownless, Elisa Rheaume, Katie M Kuo, Shina C L Kamerlin, James C Gumbart
{"title":"利用机器学习分析生物分子的分子动力学模拟。","authors":"Alfie-Louise R Brownless, Elisa Rheaume, Katie M Kuo, Shina C L Kamerlin, James C Gumbart","doi":"10.1021/acs.jpcb.4c08824","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) techniques have become powerful tools in both industrial and academic settings. Their ability to facilitate analysis of complex data and generation of predictive insights is transforming how scientific problems are approached across a wide range of disciplines. In this tutorial, we present a cursory introduction to three widely used ML techniques─logistic regression, random forest, and multilayer perceptron─applied toward analyzing molecular dynamics (MD) trajectory data. We employ our chosen ML models to the study of the SARS-CoV-2 spike protein receptor binding domain interacting with the receptor ACE2. We develop a pipeline for processing MD simulation trajectory data and identifying residues that significantly impact the stability of the complex.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning to Analyze Molecular Dynamics Simulations of Biomolecules.\",\"authors\":\"Alfie-Louise R Brownless, Elisa Rheaume, Katie M Kuo, Shina C L Kamerlin, James C Gumbart\",\"doi\":\"10.1021/acs.jpcb.4c08824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning (ML) techniques have become powerful tools in both industrial and academic settings. Their ability to facilitate analysis of complex data and generation of predictive insights is transforming how scientific problems are approached across a wide range of disciplines. In this tutorial, we present a cursory introduction to three widely used ML techniques─logistic regression, random forest, and multilayer perceptron─applied toward analyzing molecular dynamics (MD) trajectory data. We employ our chosen ML models to the study of the SARS-CoV-2 spike protein receptor binding domain interacting with the receptor ACE2. We develop a pipeline for processing MD simulation trajectory data and identifying residues that significantly impact the stability of the complex.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c08824\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08824","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Using Machine Learning to Analyze Molecular Dynamics Simulations of Biomolecules.
Machine learning (ML) techniques have become powerful tools in both industrial and academic settings. Their ability to facilitate analysis of complex data and generation of predictive insights is transforming how scientific problems are approached across a wide range of disciplines. In this tutorial, we present a cursory introduction to three widely used ML techniques─logistic regression, random forest, and multilayer perceptron─applied toward analyzing molecular dynamics (MD) trajectory data. We employ our chosen ML models to the study of the SARS-CoV-2 spike protein receptor binding domain interacting with the receptor ACE2. We develop a pipeline for processing MD simulation trajectory data and identifying residues that significantly impact the stability of the complex.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.