机械可调谐圆极化柔性自旋发光二极管

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mujahid Mustaqeem, Zhi-Bin Jin, Wei Cheng Tsai, Mohammed Ashraf Gondal, Pi-Tai Chou, Ting-Hsuan Wu, Kung-Hsuan Lin, Jian Zhang, Zhi-Gang Gu, Yang-Fang Chen
{"title":"机械可调谐圆极化柔性自旋发光二极管","authors":"Mujahid Mustaqeem,&nbsp;Zhi-Bin Jin,&nbsp;Wei Cheng Tsai,&nbsp;Mohammed Ashraf Gondal,&nbsp;Pi-Tai Chou,&nbsp;Ting-Hsuan Wu,&nbsp;Kung-Hsuan Lin,&nbsp;Jian Zhang,&nbsp;Zhi-Gang Gu,&nbsp;Yang-Fang Chen","doi":"10.1002/adom.202500060","DOIUrl":null,"url":null,"abstract":"<p>Flexible spintronics is a crucial emerging field in next-generation wearable and innovative electronic technology. Traditionally, spintronics relies on external magnetic fields and ferromagnetic contacts to achieve spin-polarized carriers. This makes it challenging to realize flexible spin devices due to the inherently bulky and rigid constituent materials. To overcome these drawbacks, a strategy is proposed for fabricating flexible spin light-emitting diodes by integrating self-assembled monolayer (SAM) of P3HT-COOH, chiral metal–organic framework (Chiral-MOF), quantum dots (QDs), and polyethylene terephthalate substrate. The chiral europium-based MOFs employed as a spin-injection layer via the chiral-induced spin selectivity mechanism can effectively polarize the emitting light. The SAM (P3HT-COOH) layer significantly enhances the device stability and light intensity compared to conventional PEDOT: PSS layer-based devices, while the QDs layer serves as the bright emitter. This device achieves an estimated external quantum efficiency (EQE) with a polarization degree (P<sub>CP-EL</sub>) of ± 21.86%. Furthermore, P<sub>CP-EL</sub> changes (21.86, 20.34, 19.34, 17.45, 17.18, 14.99, 13.54) with stable emission under various bending radii. This approach enables circularly polarized luminescence (CPL) and a tuneable degree of polarization simultaneously, which is free from external magnetic fields or ferromagnetic contacts. The obtained result offers a promising alternative in the field of flexible spintronics and builds up an additional manner to manipulate the physical properties of spin devices.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 15","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically Tuneable Circularly Polarized Flexible Spin Light Emitting Diodes\",\"authors\":\"Mujahid Mustaqeem,&nbsp;Zhi-Bin Jin,&nbsp;Wei Cheng Tsai,&nbsp;Mohammed Ashraf Gondal,&nbsp;Pi-Tai Chou,&nbsp;Ting-Hsuan Wu,&nbsp;Kung-Hsuan Lin,&nbsp;Jian Zhang,&nbsp;Zhi-Gang Gu,&nbsp;Yang-Fang Chen\",\"doi\":\"10.1002/adom.202500060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible spintronics is a crucial emerging field in next-generation wearable and innovative electronic technology. Traditionally, spintronics relies on external magnetic fields and ferromagnetic contacts to achieve spin-polarized carriers. This makes it challenging to realize flexible spin devices due to the inherently bulky and rigid constituent materials. To overcome these drawbacks, a strategy is proposed for fabricating flexible spin light-emitting diodes by integrating self-assembled monolayer (SAM) of P3HT-COOH, chiral metal–organic framework (Chiral-MOF), quantum dots (QDs), and polyethylene terephthalate substrate. The chiral europium-based MOFs employed as a spin-injection layer via the chiral-induced spin selectivity mechanism can effectively polarize the emitting light. The SAM (P3HT-COOH) layer significantly enhances the device stability and light intensity compared to conventional PEDOT: PSS layer-based devices, while the QDs layer serves as the bright emitter. This device achieves an estimated external quantum efficiency (EQE) with a polarization degree (P<sub>CP-EL</sub>) of ± 21.86%. Furthermore, P<sub>CP-EL</sub> changes (21.86, 20.34, 19.34, 17.45, 17.18, 14.99, 13.54) with stable emission under various bending radii. This approach enables circularly polarized luminescence (CPL) and a tuneable degree of polarization simultaneously, which is free from external magnetic fields or ferromagnetic contacts. The obtained result offers a promising alternative in the field of flexible spintronics and builds up an additional manner to manipulate the physical properties of spin devices.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 15\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202500060\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202500060","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性自旋电子学是下一代可穿戴和创新电子技术的重要新兴领域。传统上,自旋电子学依赖于外部磁场和铁磁接触来实现自旋极化载流子。这使得实现柔性自旋装置具有挑战性,由于固有的笨重和刚性组成材料。为了克服这些缺点,提出了一种将P3HT-COOH自组装单层(SAM)、手性金属-有机骨架(chiral - mof)、量子点(QDs)和聚对苯二甲酸乙二醇酯衬底集成在一起制造柔性自旋发光二极管的策略。利用手性诱导的自旋选择性机制将手性铕基mof用作自旋注入层,可以有效地极化发射光。与传统的基于PEDOT: PSS层的器件相比,SAM (P3HT-COOH)层显著提高了器件的稳定性和光强度,而QDs层则充当了明亮的发射器。该器件实现了估计的外量子效率(EQE),偏振度(PCP-EL)为±21.86%。在不同的弯曲半径下,PCP-EL的发射稳定变化(21.86、20.34、19.34、17.45、17.18、14.99、13.54)。这种方法可以同时实现圆极化发光(CPL)和可调谐的极化度,而不受外部磁场或铁磁接触的影响。所得结果为柔性自旋电子学领域提供了一个有希望的选择,并建立了一种额外的方法来操纵自旋器件的物理性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanically Tuneable Circularly Polarized Flexible Spin Light Emitting Diodes

Flexible spintronics is a crucial emerging field in next-generation wearable and innovative electronic technology. Traditionally, spintronics relies on external magnetic fields and ferromagnetic contacts to achieve spin-polarized carriers. This makes it challenging to realize flexible spin devices due to the inherently bulky and rigid constituent materials. To overcome these drawbacks, a strategy is proposed for fabricating flexible spin light-emitting diodes by integrating self-assembled monolayer (SAM) of P3HT-COOH, chiral metal–organic framework (Chiral-MOF), quantum dots (QDs), and polyethylene terephthalate substrate. The chiral europium-based MOFs employed as a spin-injection layer via the chiral-induced spin selectivity mechanism can effectively polarize the emitting light. The SAM (P3HT-COOH) layer significantly enhances the device stability and light intensity compared to conventional PEDOT: PSS layer-based devices, while the QDs layer serves as the bright emitter. This device achieves an estimated external quantum efficiency (EQE) with a polarization degree (PCP-EL) of ± 21.86%. Furthermore, PCP-EL changes (21.86, 20.34, 19.34, 17.45, 17.18, 14.99, 13.54) with stable emission under various bending radii. This approach enables circularly polarized luminescence (CPL) and a tuneable degree of polarization simultaneously, which is free from external magnetic fields or ferromagnetic contacts. The obtained result offers a promising alternative in the field of flexible spintronics and builds up an additional manner to manipulate the physical properties of spin devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信