{"title":"纳米材料固定化脂肪酶的制备:脂质特性和潜在的催化机制","authors":"Pengfei Zhou, Hui Fang, Zhihao Zhao, Guang Liu, Jiarui Zeng, Yuanyuan Deng, Mingwei Zhang","doi":"10.1111/1750-3841.70302","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <p>The precise regulation of enzyme conformation through the immobilization of enzymes on carriers using sewing techniques represents a key focus in the site-specific chemically modification engineering. Lipase-mediated enzymatic interesterification (EIE) is of considerable significance in lipid chemistry, having demonstrated substantial potential in the modification of lipids. In this study, we developed an innovative nanomaterial Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>-APTES for site-specific immobilization of <i>Thermomyces lanuginosus</i> lipase (TLL), achieving an immobilization yield of 51.98% and an enzyme loading capacity of 123.18 mg/g. The specific activity of the enzyme was 1034.09 U/g following lyophilization, representing increases of 2.6-fold compared to free TLL. The as-prepared biocatalyst TLL@Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>-APTES exhibited enhanced catalytic activity, remarkable tolerance to organic solvents, substrate selectivity, and recyclability over multiple cycles. Rice bran oils (RBO) and palm stearin (PS) were employed as substrates for EIE, yielding oils with better performance of solid fat content (SFC), crystallization rate, and thermodynamic properties compared to those of physical blending oils. Additionally, we investigated the catalytic mechanism of EIE using molecular docking analysis. The present study provides a theoretical foundation for the application of immobilized lipase as biocatalysts in food industrial settings.</p>\n \n <p><b>Practical Application</b>: TLL@Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>-APTES, modified at specific sites using nanomaterials, not only enhances the catalytic efficiency of the enzyme but also facilitates its reuse across multiple batches. This fixed enzyme could effectively catalyze the transesterification between PS and RBO, resulting in high-quality of oils specifically designed for baking foods. The findings in this study provide valuable guidance for the green processing of oils and fats.</p>\n </section>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Nanomaterial-Immobilized Lipase Enables Robust Enzymatic Interesterification: Lipid Characteristics and Underlying Catalytic Mechanism\",\"authors\":\"Pengfei Zhou, Hui Fang, Zhihao Zhao, Guang Liu, Jiarui Zeng, Yuanyuan Deng, Mingwei Zhang\",\"doi\":\"10.1111/1750-3841.70302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <p>The precise regulation of enzyme conformation through the immobilization of enzymes on carriers using sewing techniques represents a key focus in the site-specific chemically modification engineering. Lipase-mediated enzymatic interesterification (EIE) is of considerable significance in lipid chemistry, having demonstrated substantial potential in the modification of lipids. In this study, we developed an innovative nanomaterial Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>-APTES for site-specific immobilization of <i>Thermomyces lanuginosus</i> lipase (TLL), achieving an immobilization yield of 51.98% and an enzyme loading capacity of 123.18 mg/g. The specific activity of the enzyme was 1034.09 U/g following lyophilization, representing increases of 2.6-fold compared to free TLL. The as-prepared biocatalyst TLL@Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>-APTES exhibited enhanced catalytic activity, remarkable tolerance to organic solvents, substrate selectivity, and recyclability over multiple cycles. Rice bran oils (RBO) and palm stearin (PS) were employed as substrates for EIE, yielding oils with better performance of solid fat content (SFC), crystallization rate, and thermodynamic properties compared to those of physical blending oils. Additionally, we investigated the catalytic mechanism of EIE using molecular docking analysis. The present study provides a theoretical foundation for the application of immobilized lipase as biocatalysts in food industrial settings.</p>\\n \\n <p><b>Practical Application</b>: TLL@Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>-APTES, modified at specific sites using nanomaterials, not only enhances the catalytic efficiency of the enzyme but also facilitates its reuse across multiple batches. This fixed enzyme could effectively catalyze the transesterification between PS and RBO, resulting in high-quality of oils specifically designed for baking foods. The findings in this study provide valuable guidance for the green processing of oils and fats.</p>\\n </section>\\n </div>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70302\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70302","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Fabrication of Nanomaterial-Immobilized Lipase Enables Robust Enzymatic Interesterification: Lipid Characteristics and Underlying Catalytic Mechanism
The precise regulation of enzyme conformation through the immobilization of enzymes on carriers using sewing techniques represents a key focus in the site-specific chemically modification engineering. Lipase-mediated enzymatic interesterification (EIE) is of considerable significance in lipid chemistry, having demonstrated substantial potential in the modification of lipids. In this study, we developed an innovative nanomaterial Fe3O4-SiO2-APTES for site-specific immobilization of Thermomyces lanuginosus lipase (TLL), achieving an immobilization yield of 51.98% and an enzyme loading capacity of 123.18 mg/g. The specific activity of the enzyme was 1034.09 U/g following lyophilization, representing increases of 2.6-fold compared to free TLL. The as-prepared biocatalyst TLL@Fe3O4-SiO2-APTES exhibited enhanced catalytic activity, remarkable tolerance to organic solvents, substrate selectivity, and recyclability over multiple cycles. Rice bran oils (RBO) and palm stearin (PS) were employed as substrates for EIE, yielding oils with better performance of solid fat content (SFC), crystallization rate, and thermodynamic properties compared to those of physical blending oils. Additionally, we investigated the catalytic mechanism of EIE using molecular docking analysis. The present study provides a theoretical foundation for the application of immobilized lipase as biocatalysts in food industrial settings.
Practical Application: TLL@Fe3O4-SiO2-APTES, modified at specific sites using nanomaterials, not only enhances the catalytic efficiency of the enzyme but also facilitates its reuse across multiple batches. This fixed enzyme could effectively catalyze the transesterification between PS and RBO, resulting in high-quality of oils specifically designed for baking foods. The findings in this study provide valuable guidance for the green processing of oils and fats.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.