Tomoyuki Arakawa , Thomas Creutzig , Kazuya Kawasetsu
{"title":"仿射Kac-Moody代数和小量子群的权表示","authors":"Tomoyuki Arakawa , Thomas Creutzig , Kazuya Kawasetsu","doi":"10.1016/j.aim.2025.110365","DOIUrl":null,"url":null,"abstract":"<div><div>We study the weight modules over affine Kac-Moody algebras from the view point of vertex algebras, and determine the abelian category of weight modules for the simple affine vertex algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> at any non-integral admissible level <em>k</em>. In particular, we show that the principal block of the category of weight modules over admissible <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is equivalent to that of the corresponding (unrolled) small quantum group.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"477 ","pages":"Article 110365"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight representations of affine Kac-Moody algebras and small quantum groups\",\"authors\":\"Tomoyuki Arakawa , Thomas Creutzig , Kazuya Kawasetsu\",\"doi\":\"10.1016/j.aim.2025.110365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the weight modules over affine Kac-Moody algebras from the view point of vertex algebras, and determine the abelian category of weight modules for the simple affine vertex algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> at any non-integral admissible level <em>k</em>. In particular, we show that the principal block of the category of weight modules over admissible <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is equivalent to that of the corresponding (unrolled) small quantum group.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"477 \",\"pages\":\"Article 110365\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002634\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002634","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weight representations of affine Kac-Moody algebras and small quantum groups
We study the weight modules over affine Kac-Moody algebras from the view point of vertex algebras, and determine the abelian category of weight modules for the simple affine vertex algebra at any non-integral admissible level k. In particular, we show that the principal block of the category of weight modules over admissible is equivalent to that of the corresponding (unrolled) small quantum group.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.