{"title":"Mizuno猜想关于指数(1,2,2)的3阶Nahm和的证明","authors":"Boxue Wang, Liuquan Wang","doi":"10.1016/j.aim.2025.110368","DOIUrl":null,"url":null,"abstract":"<div><div>Mizuno provided 15 examples of generalized rank three Nahm sums with symmetrizer <span><math><mrow><mi>diag</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> which are conjecturally modular. Using the theory of Bailey pairs and some <em>q</em>-series techniques, we establish a number of triple sum Rogers–Ramanujan type identities. These identities confirm the modularity of all of Mizuno's examples except that two Nahm sums are sums of modular forms of weights 0 and 1. We also prove Mizuno's conjectural modular transformation formulas for two vector-valued functions consisting of Nahm sums with symmetrizers <span><math><mrow><mi>diag</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mrow><mi>diag</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"477 ","pages":"Article 110368"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proofs of Mizuno's conjectures on rank three Nahm sums of index (1,2,2)\",\"authors\":\"Boxue Wang, Liuquan Wang\",\"doi\":\"10.1016/j.aim.2025.110368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mizuno provided 15 examples of generalized rank three Nahm sums with symmetrizer <span><math><mrow><mi>diag</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> which are conjecturally modular. Using the theory of Bailey pairs and some <em>q</em>-series techniques, we establish a number of triple sum Rogers–Ramanujan type identities. These identities confirm the modularity of all of Mizuno's examples except that two Nahm sums are sums of modular forms of weights 0 and 1. We also prove Mizuno's conjectural modular transformation formulas for two vector-valued functions consisting of Nahm sums with symmetrizers <span><math><mrow><mi>diag</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mrow><mi>diag</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"477 \",\"pages\":\"Article 110368\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000187082500266X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500266X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Proofs of Mizuno's conjectures on rank three Nahm sums of index (1,2,2)
Mizuno provided 15 examples of generalized rank three Nahm sums with symmetrizer which are conjecturally modular. Using the theory of Bailey pairs and some q-series techniques, we establish a number of triple sum Rogers–Ramanujan type identities. These identities confirm the modularity of all of Mizuno's examples except that two Nahm sums are sums of modular forms of weights 0 and 1. We also prove Mizuno's conjectural modular transformation formulas for two vector-valued functions consisting of Nahm sums with symmetrizers and .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.