铁弹性框架Cu(tcm)中的巨负面积可压缩性

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Muzi Chen*, Hanna L. B. Boström, Dominik Daisenberger, Nicholas P. Funnell, Christopher J. Ridley, Mohamed Mezouar, Claudia Weidenthaler and Andrew B. Cairns*, 
{"title":"铁弹性框架Cu(tcm)中的巨负面积可压缩性","authors":"Muzi Chen*,&nbsp;Hanna L. B. Boström,&nbsp;Dominik Daisenberger,&nbsp;Nicholas P. Funnell,&nbsp;Christopher J. Ridley,&nbsp;Mohamed Mezouar,&nbsp;Claudia Weidenthaler and Andrew B. Cairns*,&nbsp;","doi":"10.1021/jacs.5c0299910.1021/jacs.5c02999","DOIUrl":null,"url":null,"abstract":"<p >Copper(I) tricyanomethanide, Cu(tcm), is a flexible framework material that exhibits the strongest negative area compressibility (NAC) effect ever observed─a remarkable property with potential applications in pressure sensors, artificial muscles, and shock-absorbing devices. Under increasing pressure, Cu(tcm) undergoes two sequential phase transitions (tetragonal → orthorhombic → monoclinic): It has an initial tetragonal structure (<i>I</i>4<sub>1</sub><i>md</i>) at ambient conditions, but this structure only persists within a narrow pressure range; at 0.12(3) GPa, a pressure-induced ferroelastic phase transition occurs, transforming Cu(tcm) into a low-symmetry orthorhombic structure (<i>Fdd</i>2). The orthorhombic phase has a NAC of −108(14) TPa<sup>–1</sup> in the <b>b–c</b> plane between 0.12(3) and 0.93(8) GPa. The NAC behavior is associated with framework hinge motion in a flexible framework with “wine-rack” topology. At 0.93(8) GPa, Cu(tcm) undergoes a second phase transition and transforms into a layered monoclinic structure (<i>Cc</i>) with topologically interpenetrating honeycomb networks. The monoclinic phase of Cu(tcm) exhibits a slight negative linear compressibility (NLC) of −1.1(1) TPa<sup>–1</sup> along the <i>a</i> axis and a zero area compressibility of <i>K</i><sub>ac</sub> = <i>K</i><sub>a</sub> + <i>K</i><sub>c</sub> = 0.0(4) TPa<sup>–1</sup> in the <b>a</b>–<b>c</b> plane over the pressure range of 0.93–2.63 GPa. In contrast to the orthorhombic phase, its mechanism is understood as the pressure-driven dampening of layer “rippling,” which acts to increase the cross-sectional area of the layer at higher hydrostatic pressures. These findings have implications for understanding the underlying mechanism of NAC phenomenon in framework materials.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 21","pages":"17946–17953 17946–17953"},"PeriodicalIF":15.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.5c02999","citationCount":"0","resultStr":"{\"title\":\"Colossal Negative Area Compressibility in the Ferroelastic Framework Cu(tcm)\",\"authors\":\"Muzi Chen*,&nbsp;Hanna L. B. Boström,&nbsp;Dominik Daisenberger,&nbsp;Nicholas P. Funnell,&nbsp;Christopher J. Ridley,&nbsp;Mohamed Mezouar,&nbsp;Claudia Weidenthaler and Andrew B. Cairns*,&nbsp;\",\"doi\":\"10.1021/jacs.5c0299910.1021/jacs.5c02999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Copper(I) tricyanomethanide, Cu(tcm), is a flexible framework material that exhibits the strongest negative area compressibility (NAC) effect ever observed─a remarkable property with potential applications in pressure sensors, artificial muscles, and shock-absorbing devices. Under increasing pressure, Cu(tcm) undergoes two sequential phase transitions (tetragonal → orthorhombic → monoclinic): It has an initial tetragonal structure (<i>I</i>4<sub>1</sub><i>md</i>) at ambient conditions, but this structure only persists within a narrow pressure range; at 0.12(3) GPa, a pressure-induced ferroelastic phase transition occurs, transforming Cu(tcm) into a low-symmetry orthorhombic structure (<i>Fdd</i>2). The orthorhombic phase has a NAC of −108(14) TPa<sup>–1</sup> in the <b>b–c</b> plane between 0.12(3) and 0.93(8) GPa. The NAC behavior is associated with framework hinge motion in a flexible framework with “wine-rack” topology. At 0.93(8) GPa, Cu(tcm) undergoes a second phase transition and transforms into a layered monoclinic structure (<i>Cc</i>) with topologically interpenetrating honeycomb networks. The monoclinic phase of Cu(tcm) exhibits a slight negative linear compressibility (NLC) of −1.1(1) TPa<sup>–1</sup> along the <i>a</i> axis and a zero area compressibility of <i>K</i><sub>ac</sub> = <i>K</i><sub>a</sub> + <i>K</i><sub>c</sub> = 0.0(4) TPa<sup>–1</sup> in the <b>a</b>–<b>c</b> plane over the pressure range of 0.93–2.63 GPa. In contrast to the orthorhombic phase, its mechanism is understood as the pressure-driven dampening of layer “rippling,” which acts to increase the cross-sectional area of the layer at higher hydrostatic pressures. These findings have implications for understanding the underlying mechanism of NAC phenomenon in framework materials.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 21\",\"pages\":\"17946–17953 17946–17953\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacs.5c02999\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c02999\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c02999","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三氰甲烷铜(Cu(tcm))是一种柔性框架材料,具有迄今为止观察到的最强的负区域压缩性(NAC)效应,这一显著特性在压力传感器、人造肌肉和减震装置中具有潜在的应用前景。随着压力的增加,Cu(tcm)经历了四方→正交→单斜的两个顺序相变:在环境条件下具有初始的四方结构(I41md),但这种结构只在较窄的压力范围内持续存在;在0.12(3)GPa时,Cu(tcm)发生了压力诱导的铁弹性相变,转变为低对称正交结构(Fdd2)。正交相在b-c平面的NAC为- 108(14)TPa-1,在0.12(3)~ 0.93(8)GPa之间。在具有“酒架”拓扑结构的柔性框架中,NAC行为与框架铰运动相关联。在0.93(8)GPa时,Cu(tcm)经历了第二次相变,转变为具有拓扑互穿蜂窝网络的层状单斜结构(Cc)。在0.93 ~ 2.63 GPa的压力范围内,Cu(tcm)的单斜相沿a轴的线性压缩率(NLC)为- 1.1(1)TPa-1,在a - c平面的零面积压缩率为Kac = Ka + Kc = 0.0(4) TPa-1。与正交相相反,其机制被理解为压力驱动的层“波纹”阻尼,其作用是在较高的静水压力下增加层的横截面积。这些发现对理解框架材料中NAC现象的潜在机制具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Colossal Negative Area Compressibility in the Ferroelastic Framework Cu(tcm)

Copper(I) tricyanomethanide, Cu(tcm), is a flexible framework material that exhibits the strongest negative area compressibility (NAC) effect ever observed─a remarkable property with potential applications in pressure sensors, artificial muscles, and shock-absorbing devices. Under increasing pressure, Cu(tcm) undergoes two sequential phase transitions (tetragonal → orthorhombic → monoclinic): It has an initial tetragonal structure (I41md) at ambient conditions, but this structure only persists within a narrow pressure range; at 0.12(3) GPa, a pressure-induced ferroelastic phase transition occurs, transforming Cu(tcm) into a low-symmetry orthorhombic structure (Fdd2). The orthorhombic phase has a NAC of −108(14) TPa–1 in the b–c plane between 0.12(3) and 0.93(8) GPa. The NAC behavior is associated with framework hinge motion in a flexible framework with “wine-rack” topology. At 0.93(8) GPa, Cu(tcm) undergoes a second phase transition and transforms into a layered monoclinic structure (Cc) with topologically interpenetrating honeycomb networks. The monoclinic phase of Cu(tcm) exhibits a slight negative linear compressibility (NLC) of −1.1(1) TPa–1 along the a axis and a zero area compressibility of Kac = Ka + Kc = 0.0(4) TPa–1 in the ac plane over the pressure range of 0.93–2.63 GPa. In contrast to the orthorhombic phase, its mechanism is understood as the pressure-driven dampening of layer “rippling,” which acts to increase the cross-sectional area of the layer at higher hydrostatic pressures. These findings have implications for understanding the underlying mechanism of NAC phenomenon in framework materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信