{"title":"改进药物诱导的胆汁淤积预测:一个可解释的共识模型整合化学和生物指纹。","authors":"Palle S Helmke,Gerhard F Ecker","doi":"10.1021/acs.jcim.4c02363","DOIUrl":null,"url":null,"abstract":"Effective drug safety assessment, guided by the 3R principle (Replacement, Reduction, Refinement) to minimize animal testing, is critical in early drug development. Drug-induced liver injury (DILI), particularly drug-induced cholestasis (DIC), remains a major challenge. This study introduces a computational method for predicting DIC by integrating PubChem substructure fingerprints with biological data from liver-expressed targets and pathways, alongside nine hepatic transporter inhibition models. To address class imbalance in the public cholestasis data set, we employed undersampling, a technique that constructs a small and robust consensus model by evaluating distinct subsets. The most effective baseline model, which combined PubChem substructure fingerprints, pathway data and hepatic transporter inhibition predictions, achieved a Matthews correlation coefficient (MCC) of 0.29 and a sensitivity of 0.79, as validated through 10-fold cross-validation. Subsequently, target prediction using four publicly available tools was employed to enrich the sparse compound-target interaction matrix. Although this approach showed lower sensitivity compared to experimentally derived targets and pathways, it highlighted the value of incorporating specific systems biology related information. Feature importance analysis identified albumin as a potential target linked to cholestasis within our predictive model, suggesting a connection worth further investigation. By employing an expanded consensus model and applying probability range filtering, the refined method achieved an MCC of 0.38 and a sensitivity of 0.80, thereby enhancing decision-making confidence. This approach advances DIC prediction by integrating biological and chemical descriptors, offering a reliable and explainable model.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"239 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refining Drug-Induced Cholestasis Prediction: An Explainable Consensus Model Integrating Chemical and Biological Fingerprints.\",\"authors\":\"Palle S Helmke,Gerhard F Ecker\",\"doi\":\"10.1021/acs.jcim.4c02363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective drug safety assessment, guided by the 3R principle (Replacement, Reduction, Refinement) to minimize animal testing, is critical in early drug development. Drug-induced liver injury (DILI), particularly drug-induced cholestasis (DIC), remains a major challenge. This study introduces a computational method for predicting DIC by integrating PubChem substructure fingerprints with biological data from liver-expressed targets and pathways, alongside nine hepatic transporter inhibition models. To address class imbalance in the public cholestasis data set, we employed undersampling, a technique that constructs a small and robust consensus model by evaluating distinct subsets. The most effective baseline model, which combined PubChem substructure fingerprints, pathway data and hepatic transporter inhibition predictions, achieved a Matthews correlation coefficient (MCC) of 0.29 and a sensitivity of 0.79, as validated through 10-fold cross-validation. Subsequently, target prediction using four publicly available tools was employed to enrich the sparse compound-target interaction matrix. Although this approach showed lower sensitivity compared to experimentally derived targets and pathways, it highlighted the value of incorporating specific systems biology related information. Feature importance analysis identified albumin as a potential target linked to cholestasis within our predictive model, suggesting a connection worth further investigation. By employing an expanded consensus model and applying probability range filtering, the refined method achieved an MCC of 0.38 and a sensitivity of 0.80, thereby enhancing decision-making confidence. This approach advances DIC prediction by integrating biological and chemical descriptors, offering a reliable and explainable model.\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"239 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c02363\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02363","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Refining Drug-Induced Cholestasis Prediction: An Explainable Consensus Model Integrating Chemical and Biological Fingerprints.
Effective drug safety assessment, guided by the 3R principle (Replacement, Reduction, Refinement) to minimize animal testing, is critical in early drug development. Drug-induced liver injury (DILI), particularly drug-induced cholestasis (DIC), remains a major challenge. This study introduces a computational method for predicting DIC by integrating PubChem substructure fingerprints with biological data from liver-expressed targets and pathways, alongside nine hepatic transporter inhibition models. To address class imbalance in the public cholestasis data set, we employed undersampling, a technique that constructs a small and robust consensus model by evaluating distinct subsets. The most effective baseline model, which combined PubChem substructure fingerprints, pathway data and hepatic transporter inhibition predictions, achieved a Matthews correlation coefficient (MCC) of 0.29 and a sensitivity of 0.79, as validated through 10-fold cross-validation. Subsequently, target prediction using four publicly available tools was employed to enrich the sparse compound-target interaction matrix. Although this approach showed lower sensitivity compared to experimentally derived targets and pathways, it highlighted the value of incorporating specific systems biology related information. Feature importance analysis identified albumin as a potential target linked to cholestasis within our predictive model, suggesting a connection worth further investigation. By employing an expanded consensus model and applying probability range filtering, the refined method achieved an MCC of 0.38 and a sensitivity of 0.80, thereby enhancing decision-making confidence. This approach advances DIC prediction by integrating biological and chemical descriptors, offering a reliable and explainable model.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.