贝叶斯推理的贝氏体启动温度预测模型

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bernd Schuscha, Dominik Brandl, Lorenz Romaner, Ernst Kozeschnik, Reinhold Ebner, Aurélie Jacob, Peter Presoly, Daniel Scheiber
{"title":"贝叶斯推理的贝氏体启动温度预测模型","authors":"Bernd Schuscha, Dominik Brandl, Lorenz Romaner, Ernst Kozeschnik, Reinhold Ebner, Aurélie Jacob, Peter Presoly, Daniel Scheiber","doi":"10.1016/j.actamat.2025.121131","DOIUrl":null,"url":null,"abstract":"The prediction of the bainite start temperature (<span><span><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></script></span>) is key to modelling the bainitic phase transformations in steels. The present work employs Bayesian inference on various existing models and presents enhanced models that allow for accurate prediction of bainite start temperatures. In a first step, a meticulously curated dataset is generated and accompanied by additional experimental <span><span><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></script></span> temperatures. Several physics-based models based on energy criteria (one diffusive and some displacive models) and a linear regression model are used to predict <span><span><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></script></span>. Adaptation and enhancement of the available models are evaluated in the framework of Bayesian inference including uncertainties, and the predictive performance is compared between the models. The concentration-dependent Gibbs energies are calculated using three different thermodynamic databases, and the models are parameterized regarding the best possible prediction of <span><span><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></script></span>. The obtained parameterization for a diffusive, some displacive and a linear regression model is used to analyze the uncertainty in the model parameters and to quantify the influence of the most important steel alloying elements on <span><span><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></script></span>. Results show that there is little difference between displacive, diffusive and data-driven approaches for prediction of <span><span><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">B</mi></mrow><mrow is=\"true\"><mtext is=\"true\">S</mtext></mrow></msub></math></script></span>. The direction of the influence of main steel alloying elements is consistent with literature, and a first estimation of the effect of aluminum and cobalt is obtained. It is found that aluminum increases the bainite start temperature and the energy barrier absolute, while cobalt decreases both.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"44 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive modeling of the bainite start temperature using Bayesian inference\",\"authors\":\"Bernd Schuscha, Dominik Brandl, Lorenz Romaner, Ernst Kozeschnik, Reinhold Ebner, Aurélie Jacob, Peter Presoly, Daniel Scheiber\",\"doi\":\"10.1016/j.actamat.2025.121131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of the bainite start temperature (<span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></script></span>) is key to modelling the bainitic phase transformations in steels. The present work employs Bayesian inference on various existing models and presents enhanced models that allow for accurate prediction of bainite start temperatures. In a first step, a meticulously curated dataset is generated and accompanied by additional experimental <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></script></span> temperatures. Several physics-based models based on energy criteria (one diffusive and some displacive models) and a linear regression model are used to predict <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></script></span>. Adaptation and enhancement of the available models are evaluated in the framework of Bayesian inference including uncertainties, and the predictive performance is compared between the models. The concentration-dependent Gibbs energies are calculated using three different thermodynamic databases, and the models are parameterized regarding the best possible prediction of <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></script></span>. The obtained parameterization for a diffusive, some displacive and a linear regression model is used to analyze the uncertainty in the model parameters and to quantify the influence of the most important steel alloying elements on <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></script></span>. Results show that there is little difference between displacive, diffusive and data-driven approaches for prediction of <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">B</mi></mrow><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">S</mtext></mrow></msub></math></script></span>. The direction of the influence of main steel alloying elements is consistent with literature, and a first estimation of the effect of aluminum and cobalt is obtained. It is found that aluminum increases the bainite start temperature and the energy barrier absolute, while cobalt decreases both.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.121131\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121131","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

贝氏体开始温度的预测是模拟钢中贝氏体相变的关键。本工作在各种现有模型上采用贝叶斯推理,并提出了能够准确预测贝氏体开始温度的增强模型。在第一步中,生成一个精心策划的数据集,并附带额外的实验BSBS温度。几个基于能量标准的物理模型(一个扩散模型和一些位移模型)和一个线性回归模型被用来预测BSBS。在考虑不确定性的贝叶斯推理框架下,评价了现有模型的适应性和增强性,并比较了模型之间的预测性能。使用三种不同的热力学数据库计算了与浓度相关的吉布斯能,并对模型进行了参数化,以获得最佳的BSBS预测结果。利用所得到的扩散模型、位移模型和线性回归模型的参数化方法,分析了模型参数的不确定性,量化了最重要的钢合金元素对BSBS的影响。结果表明,驱替法、扩散法和数据驱动法对BSBS的预测差异不大。主要钢合金元素的影响方向与文献一致,并对铝和钴的影响进行了初步估计。结果表明,铝提高了贝氏体的起始温度和能垒绝对值,而钴降低了两者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predictive modeling of the bainite start temperature using Bayesian inference

Predictive modeling of the bainite start temperature using Bayesian inference
The prediction of the bainite start temperature (BS) is key to modelling the bainitic phase transformations in steels. The present work employs Bayesian inference on various existing models and presents enhanced models that allow for accurate prediction of bainite start temperatures. In a first step, a meticulously curated dataset is generated and accompanied by additional experimental BS temperatures. Several physics-based models based on energy criteria (one diffusive and some displacive models) and a linear regression model are used to predict BS. Adaptation and enhancement of the available models are evaluated in the framework of Bayesian inference including uncertainties, and the predictive performance is compared between the models. The concentration-dependent Gibbs energies are calculated using three different thermodynamic databases, and the models are parameterized regarding the best possible prediction of BS. The obtained parameterization for a diffusive, some displacive and a linear regression model is used to analyze the uncertainty in the model parameters and to quantify the influence of the most important steel alloying elements on BS. Results show that there is little difference between displacive, diffusive and data-driven approaches for prediction of BS. The direction of the influence of main steel alloying elements is consistent with literature, and a first estimation of the effect of aluminum and cobalt is obtained. It is found that aluminum increases the bainite start temperature and the energy barrier absolute, while cobalt decreases both.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信