优化LLM在医疗保健中的应用:在MyChart消息中识别患者问题。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Akhila Chekuri, Armaan S Johal, Matthew R Allen, John W Ayers, Michael Hogarth, Emilia Farcas
{"title":"优化LLM在医疗保健中的应用:在MyChart消息中识别患者问题。","authors":"Akhila Chekuri, Armaan S Johal, Matthew R Allen, John W Ayers, Michael Hogarth, Emilia Farcas","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The volume of patient-provider messages is on the rise, and Large Language Models (LLMs) can potentially streamline the clinical messaging process, but their success hinges on triaging messages they can optimally address. In this study, we analyzed Electronic Health Records with over 4 million messages exchanged between patients and providers to characterize the utility of using LLMs for messages containing knowledge questions. We implemented a rule-based Syntactic Question Detector as a triage tool, and we evaluated it on 500 messages. The interrater reliability metrics and comparison with LLMs show the difficulty of detecting questions due to the informal text and implicit requests. Our results show that 25% of MyChart messages with questions do not have a response from the clinical team. This paper provides insights into the challenges of real-world data, highlights the importance and non-triviality of detecting questions, and suggests a pipeline for LLM use in healthcare.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"232-241"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099336/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards Optimizing LLM Use in Healthcare: Identifying Patient Questions in MyChart Messages.\",\"authors\":\"Akhila Chekuri, Armaan S Johal, Matthew R Allen, John W Ayers, Michael Hogarth, Emilia Farcas\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The volume of patient-provider messages is on the rise, and Large Language Models (LLMs) can potentially streamline the clinical messaging process, but their success hinges on triaging messages they can optimally address. In this study, we analyzed Electronic Health Records with over 4 million messages exchanged between patients and providers to characterize the utility of using LLMs for messages containing knowledge questions. We implemented a rule-based Syntactic Question Detector as a triage tool, and we evaluated it on 500 messages. The interrater reliability metrics and comparison with LLMs show the difficulty of detecting questions due to the informal text and implicit requests. Our results show that 25% of MyChart messages with questions do not have a response from the clinical team. This paper provides insights into the challenges of real-world data, highlights the importance and non-triviality of detecting questions, and suggests a pipeline for LLM use in healthcare.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"232-241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099336/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

患者-提供者信息的数量正在增加,大型语言模型(llm)可以潜在地简化临床信息传递过程,但它们的成功取决于它们能够最佳地处理的分类信息。在本研究中,我们分析了患者和提供者之间交换的超过400万条消息的电子健康记录,以表征使用llm处理包含知识问题的消息的效用。我们实现了一个基于规则的句法问题检测器作为分类工具,并对500条消息进行了评估。解释器可靠性指标和与llm的比较表明,由于非正式文本和隐含请求,问题检测困难。我们的结果显示,有25%的MyChart问题信息没有得到临床团队的回应。本文提供了对现实世界数据挑战的见解,强调了检测问题的重要性和非琐细性,并建议在医疗保健中使用法学硕士的管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Optimizing LLM Use in Healthcare: Identifying Patient Questions in MyChart Messages.

The volume of patient-provider messages is on the rise, and Large Language Models (LLMs) can potentially streamline the clinical messaging process, but their success hinges on triaging messages they can optimally address. In this study, we analyzed Electronic Health Records with over 4 million messages exchanged between patients and providers to characterize the utility of using LLMs for messages containing knowledge questions. We implemented a rule-based Syntactic Question Detector as a triage tool, and we evaluated it on 500 messages. The interrater reliability metrics and comparison with LLMs show the difficulty of detecting questions due to the informal text and implicit requests. Our results show that 25% of MyChart messages with questions do not have a response from the clinical team. This paper provides insights into the challenges of real-world data, highlights the importance and non-triviality of detecting questions, and suggests a pipeline for LLM use in healthcare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信