利用医院中期数据自动生成进度记录减轻临床医生负担

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Sarvesh Soni, Dina Demner-Fushman
{"title":"利用医院中期数据自动生成进度记录减轻临床医生负担","authors":"Sarvesh Soni, Dina Demner-Fushman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p><i>Regular documentation ofprogress notes is one of the main contributors to clinician burden. The abundance of structured chart information in medical records further exacerbates the burden, however, it also presents an opportunity to automate the generation of progress notes. In this paper, we propose a task to automate progress note generation using structured or tabular information present in electronic health records. To this end, we present a novel framework and a large dataset,</i> CHARTPNG, <i>for the task which contains</i> 7089 <i>annotation instances (each having a pair of progress notes and interim structured chart data) across</i> 1616 <i>patients. We establish baselines on the dataset using large language models from general and biomedical domains. We perform both automated (where the best performing Biomistral model achieved a BERTScore F1 of</i> 80.53 <i>and MEDCON score of</i> 19.61<i>) and manual (where we found that the model was able to leverage relevant structured data with</i> 76.9% <i>accuracy) analyses to identify the challenges with the proposed task and opportunities for future research.</i></p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1059-1068"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099345/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toward Relieving Clinician Burden by Automatically Generating Progress Notes using Interim Hospital Data.\",\"authors\":\"Sarvesh Soni, Dina Demner-Fushman\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Regular documentation ofprogress notes is one of the main contributors to clinician burden. The abundance of structured chart information in medical records further exacerbates the burden, however, it also presents an opportunity to automate the generation of progress notes. In this paper, we propose a task to automate progress note generation using structured or tabular information present in electronic health records. To this end, we present a novel framework and a large dataset,</i> CHARTPNG, <i>for the task which contains</i> 7089 <i>annotation instances (each having a pair of progress notes and interim structured chart data) across</i> 1616 <i>patients. We establish baselines on the dataset using large language models from general and biomedical domains. We perform both automated (where the best performing Biomistral model achieved a BERTScore F1 of</i> 80.53 <i>and MEDCON score of</i> 19.61<i>) and manual (where we found that the model was able to leverage relevant structured data with</i> 76.9% <i>accuracy) analyses to identify the challenges with the proposed task and opportunities for future research.</i></p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"1059-1068\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099345/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定期记录病程记录是增加临床医生负担的主要因素之一。医疗记录中丰富的结构化图表信息进一步加重了负担,然而,它也提供了自动化生成进度记录的机会。在本文中,我们提出了一项任务,使用电子健康记录中存在的结构化或表格信息自动生成进度记录。为此,我们提出了一个新的框架和一个大型数据集CHARTPNG,该任务包含1616名患者的7089个注释实例(每个实例都有一对进度说明和临时结构化图表数据)。我们使用来自一般和生物医学领域的大型语言模型在数据集上建立基线。我们执行了自动化(其中表现最好的Biomistral模型达到了BERTScore F1为80.53,MEDCON得分为19.61)和手动(我们发现该模型能够利用相关结构化数据,准确率为76.9%)分析,以确定所提出任务的挑战和未来研究的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Relieving Clinician Burden by Automatically Generating Progress Notes using Interim Hospital Data.

Regular documentation ofprogress notes is one of the main contributors to clinician burden. The abundance of structured chart information in medical records further exacerbates the burden, however, it also presents an opportunity to automate the generation of progress notes. In this paper, we propose a task to automate progress note generation using structured or tabular information present in electronic health records. To this end, we present a novel framework and a large dataset, CHARTPNG, for the task which contains 7089 annotation instances (each having a pair of progress notes and interim structured chart data) across 1616 patients. We establish baselines on the dataset using large language models from general and biomedical domains. We perform both automated (where the best performing Biomistral model achieved a BERTScore F1 of 80.53 and MEDCON score of 19.61) and manual (where we found that the model was able to leverage relevant structured data with 76.9% accuracy) analyses to identify the challenges with the proposed task and opportunities for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信