脓毒症预测模型是在偏离临床医生推荐治疗时间的标签上训练的。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Gary E Weissman, Rebecca A Hubbard, Blanca E Himes, Kelly L Goodman-O'Leary, Michael O Harhay, Jennifer C Ginestra, Rachel Kohn, Andrew J Admon, Stephanie Parks Taylor, Scott D Halpern
{"title":"脓毒症预测模型是在偏离临床医生推荐治疗时间的标签上训练的。","authors":"Gary E Weissman, Rebecca A Hubbard, Blanca E Himes, Kelly L Goodman-O'Leary, Michael O Harhay, Jennifer C Ginestra, Rachel Kohn, Andrew J Admon, Stephanie Parks Taylor, Scott D Halpern","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many sepsis prediction models use the Sepsis-3 definition or its variants as a training label. However, among the few sepsis models ever deployed in practice, there is scant evidence that they offer clinically meaningful decision support at the bedside. As a potential mechanism to explain this limitation, we hypothesized that clinician-recommended treatment times for sepsis would diverge from onset time defined by Sepsis-3. We conducted an electronic survey that was completed by 153 clinicians at three large and geographically diverse medical centers using vignettes derived from eight real cases of sepsis. After reviewing these vignettes, participants suggested antibiotic treatment to start an average of 7.0 hours (95% confidence interval 5.3 to 8.8) before the Sepsis-3 definition onset. Thus, predicting Sepsis-3 onset as a treatment prompt could lead to inappropriate and delayed treatment recommendations. Building predictive decision support systems that identify outcomes aligned with bedside decisions would increase their clinical utility.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1215-1224"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sepsis Prediction Models are Trained on Labels that Diverge from Clinician-Recommended Treatment Times.\",\"authors\":\"Gary E Weissman, Rebecca A Hubbard, Blanca E Himes, Kelly L Goodman-O'Leary, Michael O Harhay, Jennifer C Ginestra, Rachel Kohn, Andrew J Admon, Stephanie Parks Taylor, Scott D Halpern\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many sepsis prediction models use the Sepsis-3 definition or its variants as a training label. However, among the few sepsis models ever deployed in practice, there is scant evidence that they offer clinically meaningful decision support at the bedside. As a potential mechanism to explain this limitation, we hypothesized that clinician-recommended treatment times for sepsis would diverge from onset time defined by Sepsis-3. We conducted an electronic survey that was completed by 153 clinicians at three large and geographically diverse medical centers using vignettes derived from eight real cases of sepsis. After reviewing these vignettes, participants suggested antibiotic treatment to start an average of 7.0 hours (95% confidence interval 5.3 to 8.8) before the Sepsis-3 definition onset. Thus, predicting Sepsis-3 onset as a treatment prompt could lead to inappropriate and delayed treatment recommendations. Building predictive decision support systems that identify outcomes aligned with bedside decisions would increase their clinical utility.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"1215-1224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多脓毒症预测模型使用脓毒症-3定义或其变体作为训练标签。然而,在实践中部署的少数脓毒症模型中,很少有证据表明它们在床边提供临床有意义的决策支持。作为解释这一限制的潜在机制,我们假设临床医生推荐的脓毒症治疗时间与脓毒症-3定义的发病时间不同。我们进行了一项电子调查,由三个地理位置不同的大型医疗中心的153名临床医生完成,使用来自八个真实败血症病例的小片段。在回顾这些小插曲后,参与者建议在脓毒症-3定义开始前平均7.0小时(95%置信区间5.3至8.8)开始抗生素治疗。因此,预测脓毒症-3发病作为治疗提示可能导致不适当和延迟的治疗建议。建立预测决策支持系统,识别与床边决定一致的结果,将增加其临床效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sepsis Prediction Models are Trained on Labels that Diverge from Clinician-Recommended Treatment Times.

Many sepsis prediction models use the Sepsis-3 definition or its variants as a training label. However, among the few sepsis models ever deployed in practice, there is scant evidence that they offer clinically meaningful decision support at the bedside. As a potential mechanism to explain this limitation, we hypothesized that clinician-recommended treatment times for sepsis would diverge from onset time defined by Sepsis-3. We conducted an electronic survey that was completed by 153 clinicians at three large and geographically diverse medical centers using vignettes derived from eight real cases of sepsis. After reviewing these vignettes, participants suggested antibiotic treatment to start an average of 7.0 hours (95% confidence interval 5.3 to 8.8) before the Sepsis-3 definition onset. Thus, predicting Sepsis-3 onset as a treatment prompt could lead to inappropriate and delayed treatment recommendations. Building predictive decision support systems that identify outcomes aligned with bedside decisions would increase their clinical utility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信