基于分类器导向背景掩蔽的资源不足皮肤病诊断的鲁棒视觉识别。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Miguel Dominguez, Julie Ryan Wolf, Paritosh Prasad, Wendemagegn Enbiale, Michael Gottlieb, Carl T Berdahl, Art Papier
{"title":"基于分类器导向背景掩蔽的资源不足皮肤病诊断的鲁棒视觉识别。","authors":"Miguel Dominguez, Julie Ryan Wolf, Paritosh Prasad, Wendemagegn Enbiale, Michael Gottlieb, Carl T Berdahl, Art Papier","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Collecting images of rare dermatological diseases for machine learning detection applications is a costly, laborious task. It is difficult to collect enough images of these diagnoses to avoid the risk of low accuracy \"in the wild\". One of the sources of bias in these networks is irrelevant background pixel data. These pixels necessarily have no clinical significance, yet Deep Neural Networks will make weak correlations based on that information. To reduce their ability to do this, we introduce a masking augmentation algorithm, InfoMax-Cutout. It employs unsupervised Information Maximization losses to mask out background pixels. InfoMax-Cutout increased accuracy on classifying 319 diagnoses by 0.76%. These features generalized to an unseen diagnosis task (Fitzpatrick 17k), improving accuracy over a baseline by 43.3% and reducing Gini inequality by 20.9%. This approach of learning to separate out background pixels can increase accuracy in detecting diseases in Lower and Middle Income Countries.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"368-377"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099365/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust Visual Identification of Under-resourced Dermatological Diagnoses with Classifier-Steered Background Masking.\",\"authors\":\"Miguel Dominguez, Julie Ryan Wolf, Paritosh Prasad, Wendemagegn Enbiale, Michael Gottlieb, Carl T Berdahl, Art Papier\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Collecting images of rare dermatological diseases for machine learning detection applications is a costly, laborious task. It is difficult to collect enough images of these diagnoses to avoid the risk of low accuracy \\\"in the wild\\\". One of the sources of bias in these networks is irrelevant background pixel data. These pixels necessarily have no clinical significance, yet Deep Neural Networks will make weak correlations based on that information. To reduce their ability to do this, we introduce a masking augmentation algorithm, InfoMax-Cutout. It employs unsupervised Information Maximization losses to mask out background pixels. InfoMax-Cutout increased accuracy on classifying 319 diagnoses by 0.76%. These features generalized to an unseen diagnosis task (Fitzpatrick 17k), improving accuracy over a baseline by 43.3% and reducing Gini inequality by 20.9%. This approach of learning to separate out background pixels can increase accuracy in detecting diseases in Lower and Middle Income Countries.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"368-377\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099365/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为机器学习检测应用收集罕见皮肤病的图像是一项昂贵而费力的任务。很难收集到足够的这些诊断图像,以避免“在野外”出现低准确率的风险。这些网络中偏差的来源之一是不相关的背景像素数据。这些像素必然没有临床意义,但深度神经网络将根据这些信息建立弱相关性。为了降低它们这样做的能力,我们引入了一个掩蔽增强算法,InfoMax-Cutout。它采用无监督信息最大化损失来掩盖背景像素。InfoMax-Cutout对319种诊断的分类准确率提高了0.76%。这些特征推广到一个看不见的诊断任务(Fitzpatrick 17k),在基线上提高了43.3%的准确性,减少了20.9%的基尼不平等。这种学习分离背景像素的方法可以提高中低收入国家检测疾病的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Visual Identification of Under-resourced Dermatological Diagnoses with Classifier-Steered Background Masking.

Collecting images of rare dermatological diseases for machine learning detection applications is a costly, laborious task. It is difficult to collect enough images of these diagnoses to avoid the risk of low accuracy "in the wild". One of the sources of bias in these networks is irrelevant background pixel data. These pixels necessarily have no clinical significance, yet Deep Neural Networks will make weak correlations based on that information. To reduce their ability to do this, we introduce a masking augmentation algorithm, InfoMax-Cutout. It employs unsupervised Information Maximization losses to mask out background pixels. InfoMax-Cutout increased accuracy on classifying 319 diagnoses by 0.76%. These features generalized to an unseen diagnosis task (Fitzpatrick 17k), improving accuracy over a baseline by 43.3% and reducing Gini inequality by 20.9%. This approach of learning to separate out background pixels can increase accuracy in detecting diseases in Lower and Middle Income Countries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信