整合多传感器时间序列数据用于ALS患者病例研究中ALSFRS-R临床量表预测。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Noah Marchal, William E Janes, Juliana H Earwood, Abu S M Mosa, Mihail Popescu, Marjorie Skubic, Xing Song
{"title":"整合多传感器时间序列数据用于ALS患者病例研究中ALSFRS-R临床量表预测。","authors":"Noah Marchal, William E Janes, Juliana H Earwood, Abu S M Mosa, Mihail Popescu, Marjorie Skubic, Xing Song","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical tools for tracking functional decline in amyotrophic lateral sclerosis (ALS) rely on in-clinic guided assessments, such as the gold standard ALS Functional Rating Scale Revised (ALSFRS-R) instrument, thus limiting the frequency of collection and potentially delaying needed treatments. As such, ALS clinicians may miss subtle yet critical shifts inpatient health -pointing to the needfor objective and continuous capturing of day-to-day functional status. In-home health sensors could supplement clinical instruments with more frequent, quantitative measurements as early indicators of change. Using the XGBoost regressor in base learning, we explore interpolation techniques for aligning monthly ALSFRS-R assessment targets with high frequency sensor-based health features. We evaluated 9 interpolation models, which demonstrate superior prediction of ALSFRS-R scores compared to traditional clinical scale estimates based on linear slope. This pilot work provides a practical approach of modeling mixed-frequency data and shows the potential of using sensor-based health estimates as sensitive prognostic markers.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"788-797"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating Multi-sensor Time-series Data for ALSFRS-R Clinical Scale Predictions in an ALS Patient Case Study.\",\"authors\":\"Noah Marchal, William E Janes, Juliana H Earwood, Abu S M Mosa, Mihail Popescu, Marjorie Skubic, Xing Song\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical tools for tracking functional decline in amyotrophic lateral sclerosis (ALS) rely on in-clinic guided assessments, such as the gold standard ALS Functional Rating Scale Revised (ALSFRS-R) instrument, thus limiting the frequency of collection and potentially delaying needed treatments. As such, ALS clinicians may miss subtle yet critical shifts inpatient health -pointing to the needfor objective and continuous capturing of day-to-day functional status. In-home health sensors could supplement clinical instruments with more frequent, quantitative measurements as early indicators of change. Using the XGBoost regressor in base learning, we explore interpolation techniques for aligning monthly ALSFRS-R assessment targets with high frequency sensor-based health features. We evaluated 9 interpolation models, which demonstrate superior prediction of ALSFRS-R scores compared to traditional clinical scale estimates based on linear slope. This pilot work provides a practical approach of modeling mixed-frequency data and shows the potential of using sensor-based health estimates as sensitive prognostic markers.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"788-797\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

追踪肌萎缩性侧索硬化症(ALS)功能衰退的临床工具依赖于临床指导评估,如金标准ALS功能评定量表修订版(ALSFRS-R)仪器,因此限制了收集的频率,并可能延迟所需的治疗。因此,渐冻症临床医生可能会错过病人健康的微妙但关键的变化——指出需要客观和持续地捕捉日常功能状态。家庭健康传感器可以作为临床仪器的补充,提供更频繁的定量测量,作为变化的早期指标。利用基础学习中的XGBoost回归量,我们探索了将每月ALSFRS-R评估目标与基于高频传感器的健康特征对齐的插值技术。我们评估了9种插值模型,与基于线性斜率的传统临床量表估计相比,它们显示出更好的预测ALSFRS-R评分。这项试点工作提供了一种对混合频率数据建模的实用方法,并显示了使用基于传感器的健康估计作为敏感预后标记的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Multi-sensor Time-series Data for ALSFRS-R Clinical Scale Predictions in an ALS Patient Case Study.

Clinical tools for tracking functional decline in amyotrophic lateral sclerosis (ALS) rely on in-clinic guided assessments, such as the gold standard ALS Functional Rating Scale Revised (ALSFRS-R) instrument, thus limiting the frequency of collection and potentially delaying needed treatments. As such, ALS clinicians may miss subtle yet critical shifts inpatient health -pointing to the needfor objective and continuous capturing of day-to-day functional status. In-home health sensors could supplement clinical instruments with more frequent, quantitative measurements as early indicators of change. Using the XGBoost regressor in base learning, we explore interpolation techniques for aligning monthly ALSFRS-R assessment targets with high frequency sensor-based health features. We evaluated 9 interpolation models, which demonstrate superior prediction of ALSFRS-R scores compared to traditional clinical scale estimates based on linear slope. This pilot work provides a practical approach of modeling mixed-frequency data and shows the potential of using sensor-based health estimates as sensitive prognostic markers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信